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Abstract

The very thought about “relating” objects makes us assume the relation would be “pairwise”, and
not of a “higher-order” — involving possibly more than two of them at a time. Yet in reality,
higher-order relations do exist and are spread across multiple domains: medical science (e.g., co-
existing diseases/symptoms), pharmacology (e.g., reacting chemicals), bibliometrics (e.g., collaborating
researchers), the film industry (e.g., cast/crew), human resource (e.g., a team), social sciences (e.g.,
negotiating/conflicting nations), and so on. Since a collection of intersecting higher-order relations lose

context when represented by a graph, “hypergraphs” – graph-like structures that allow edges (called
“hyperedges”/“hyperlinks”) spanning possibly more than two nodes – capture them better. In a quest
to better understand such relations, in this thesis we focus on solving a few network-science oriented
problems involving hypergraphs.

In the first of three broad parts, we study the behavior of usual graph-oriented networks that have

an otherwise-ignored hypergraph underpinning. We particularly establish the skewness a hypergraph

introduces into its induced graphs, and the effect of these biases on the structure and evaluation
of the well-known problem of link prediction in networks. We find that an underlying hypergraph
structure makes popular heuristics such as common-neighbors overestimate their ability to predict

links. Gathering enough evidence – both theoretical and empirical – to support the need to reestablish
the evaluations of link prediction algorithms on hypergraph-derived networks, we propose adjustments

that essentially undo the undesired effects of hypergraphs in performance scores. Motivated by this
observation, we extend graph-based structural node similarity measures to cater to hypergraphs

(although still, for similarity between pairs of nodes). To be specific, we first establish mathematical
transformations that could transfer any graph-structure-based notion of similarity between node pairs
to a hypergraph-structure-based one. Using exhaustive combinations of the newly established scores
with the existing ones, we could show improvements in the performance of both structural as well as

temporal link prediction.
For the second part of our thesis, we turn our attention towards a more central problem in hyper-

graphs — the “hyperlink/hyperedge prediction” problem. It simply refers to developing models to
predict the occurrence of missing or future hyperedges. We first study the effect of “negative sampling”

x



Abstract Abstract

(sampling the negative class) – an exercise performed due to the extreme intractability of the set of all
non-hyperlinks, also known as the class imbalance problem – on hyperlink prediction, which has never
been studied in the past. Since we observe hyperlink prediction algorithms performing differently under

different negative sampling techniques, our experiments help the seemingly unimportant procedure
gain some significance. Moreover, we contribute towards two benchmark negative sampling algorithms

that would help standardize the step. Moving on from the negative sampling problem to predicting
hyperlinks themselves, we work on two different approaches: a “clique-closure” based approach,
and a “sub-higher-order” oriented one. While in the former, we develop and successfully test the
clique-closure hypothesis – that hyperlinks mostly form from cliques or near-cliques – and are able to
utilize it for hyperlink prediction via matrix completion (C3MM), the latter approach works on a novel
information flow model in hypergraphs. More precisely, we introduce the concept of “sub-hyperedges”
to capture the sub-higher-order notion in relations, and utilize an attention-based neural network model

called SHONeN focusing on sub-hyperedges of a hyperedge. Owing to SHONeN’s computational
complexity, we propose a sub-optimal heuristic that is able to perform better than its baselines on the
downstream task of predicting hyperedges.

The third and final part of our thesis is dedicated exclusively to “bipartite hypergraphs”: structures
that are used to capture higher-order relations between two disjoint node sets, e.g., a patient’s diagnosis

(possibly multiple diseases and symptoms), a movie project (multiple actors and crew members), etc.
We first capture the structure of real-world such networks using “per-fixed” bipartite hypergraphs (those
where the set of left and right hyperedges is fixed beforehand), and then focus on the “bipartite hyperlink
prediction” problem. Since existing self-attention based approaches meant for usual hypergraphs do not

work for bipartite hypergraphs — a fact that our experiments validate, we propose a “cross-attention”
model for the same, and use the notion of set-matching over collections of sets to solve for bipartite
hyperlink prediction. As a result, we develop a neural network architecture called CATSETMAT that
performs way better than any of the other approaches meant to solve the bipartite hyperlink prediction
problem. Last but not least, we also explain how, owing to an observation we call the “positive-negative
dilemma”, existing state-of-the-art algorithms fail on bipartite hypergraphs.
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Chapter 1

Introduction

“More is not necessarily better. Better is better.” ∼ Julie Newmar

M
ORE is better – a saying we have all heard is true, but in most contexts including computer science,
more is expensive is as true. If we settle on the proposition that more is both better as well as

expensive, we could start our journey with relations of a higher order. First things first, by “higher-
order relations”, we do not refer to relations over relations (as Armstrong [6] does), but to relations
involving possibly multiple entities (popularly known as higher-degree, higher-arity, higher-rank, or
higher-adicity relations).1

1.1 Motivation
Broadly speaking, the first step in a data analysis pipeline is that of data representation – we borrow
tools called vectors from the field of linear algebra to represent individual data points. The data
representation step focuses on an individual data point X and identifies it in isolation, by, say an
n-dimensional vector x ∈ Rn. Once every single data point is satisfactorily represented in isolation,
we move to exploring the relation between two of them. An example of a relation concerning two
data points X and Y represented by vectors x ∈ Rn and y ∈ Rn respectively, is based on the cosine
similarity x>y

|x||y| between them. While cosine similarity is numerical, relations could also be Boolean in
nature, e.g., those connecting two data points by answering the question “Are two data points related?”
by a simple “Yes” or “No”. Moreover, relations between data points could also be in a “may be” state,
when not explicitly related. We discuss this point in detail in this section.

1Though we have many options to use, we stick to the qualifier “higher order” to be consistent with the concept of
higher-order learning propagated by Agarwal et al. [3].
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1. INTRODUCTION

1.1.1 The Dyadic Relation Assumption (DRA)
Nevertheless, the choice of relating two data points (and not more) owes itself to the sheer convenience
– both philosophical [71] as well as mathematical – it provides to the researcher. In other words, it is
customary to postfix the phrase “relation between” with something of the form “two items” or “items
A and B”. Moreover, even if one says “relation between items of set S” or “relation over set S”, it
generally is understood as a pairwise relation defined over pairs of items A,B ∈ S. For example, “a set
S of siblings” is simply interpreted as “A,B ∈ S =⇒ A and B are siblings.” We call this the “dyadic

relation assumption (DRA)”.
While DRA is not problematic for most relations (namely friends, relatives, colleagues, etc.), a

substantial variety of useful relations are meant to be kept as those being of a higher order. For instance,
in some networks pertaining to biological sciences (protein interaction, disease comorbidity, drug
abuse warning, etc.), we see relations adopting a higher order. Although whether to view them as
pairwise relations is still a matter of choice, such an assumption could be hugely lossy, since some
pairs of entities may not even be related directly. Take a protein interaction network [25], wherein
proteins that are known have a physical contact mutually are connected using a higher-order relation.

Let F denote the set of all such observed/known protein interactions (i.e., relations), and pick a
specific relation F := {P,Q,R, S} ∈ F that relates four proteins that are known to be interacting.
In essence, the mere existence of the relation F in F implies that proteins P,Q,R, and S are known
to mutually interact. However, going by DRA, we get a set P2(F )1 of protein pairs, defined by
P2(F ) := {F ′ ⊆ F : |F ′| = 2} = {{P,Q}, {P,R}, {P, S}, {Q,R}, {Q, S}, {R, S}}. Now, DRA says
“{A,B} ∈ P2(F ) =⇒ A and B interact with each other.” But this might not necessarily be true for all
pairs, unless all of them occur as individual relations in the original collection F of relations (just as
F does). In other words, it could very well be true that, say, proteins Q and R cannot interact in the
absence of P – a fact that would mean the protein interaction {Q,R} “does not belong to” F. Hence,
the erroneous assumption that all pairs of proteins interact is not true in reality. This shows how by
merely observing an interacting quadruplet {P,Q,R, S}, the dyadic relation assumption (DRA) can tag

some non-interacting protein pairs as interacting. It could therefore be stated that the dyadic relation
assumption (DRA) could be potentially misleading in real-world applications.

1.1.2 The Gestalt Viewpoint
We have discussed how the dyadic relation assumption (DRA) distorts the view a higher-order relation
holds, by simply connecting all pairs of involved nodes with their individual relations. But it still does
not satisfactorily answer the question: “Why not simply be done with the higher-order perspective

1Let P(S) denote the powerset (set of all subsets), and P2(S), the k-powerset (all k-sized subsets) of S.

2



1. INTRODUCTION

and accept the DRA view outright”? In other words, what could go wrong if a higher-order relation
is replaced by multiple pairwise ones, as per DRA? After all, the status of multiple entities being
connected still remains intact in the form of pairs of connections. Let us take a different example
before discussing this further.

Imagine there is a political organization called BAKERSTREET JOINT PARTY containing mem-
bers SHERLOCK HOLMES, JOHN WATSON, and MYCROFT HOLMES. Now, since SHERLOCK,
WATSON, and MYCROFT are members of the same party, it implies that the trio is mutually com-

patible. However, would it be right to deduce(!) that they are pairwise compatible as well (a
fact demanded by DRA)? Or more specifically, should one assume from the three-order relation
{SHERLOCK,WATSON,MYCROFT} that SHERLOCK and MYCROFT gel well with each other? Not
necessarily; let us suppose that they have conflicting ideologies1. But if that is the case, then why on
earth would they join the same party? The answer lies in WATSON, who acts as the “compatibility
enhancer” between the two. In other words, the trio would have formed a party mainly because
of WATSON, and so while the pairs {SHERLOCK,WATSON}, {MYCROFT,WATSON} may be valid
relations, the pair {SHERLOCK,MYCROFT} is not.

Our aim with this example is not to reestablish the shortcomings of DRA (since we have already
done that in the foregoing section), but to illustrate an important concept called the Gestalt psychol-

ogy [58, 29, 53]: “The whole is more than the sum of its parts.” That between SHERLOCK, WATSON,
and MYCROFT, the principles governing their triadic and the dyadic interactions are not the same (and
more so, not derivable from each other), owes itself to the Gestalt principle. Restating this point more
concretely, we have that “The higher-order relation F = {SHERLOCK,WATSON,MYCROFT} (i.e., the
whole) cannot be replaced merely by the set of its pairwise combinations P2(F ) = {{SHERLOCK,
WATSON}, {WATSON, MYCROFT}, {SHERLOCK, MYCROFT}} (i.e., the sum of its parts), but has
more to it.” This is true mainly since the kind of political underpinnings involved in the functioning
of a group could be more than just pairwise interactions of its members. Since the Gestalt principle
– although not so popularly discussed these days – applies to multiple domains of machine learning
[75, 116, 129, 138, 87], it motivates us in our pursuit of understanding and utilizing higher-order
relations better.

1.1.3 Where DRA holds good
The Dyadic Relation Assumption (DRA), however, is not all that bad. This is so since for most
practical purposes, it is the only tractable technique. It is true that it distorts the real picture, but the
extent of distortion varies from dataset to dataset and application to application. For example, the
ill-effects of clique expansion would be worse in bigger hyperedges (say of size 10) rather than in

1Fans of the works of fiction on Sherlock Holmes by Arthur Conan Doyle [27] would know that this is actually true!
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1. INTRODUCTION

smaller ones (of size 3–4). Also, for a hypergraph clustering application, clique expansion seems good
enough [10, 106, 65]. After all, retaining a higher-order structure only caters to subtle changes as
compared to following DRA.

1.2 Scope of the Thesis
In the current thesis, we have worked towards expanding the horizons of network science to cater
to higher-order relations. To capture such relations conveniently, we use combinatorial structures
called “hypergraphs” [13, 14, 18]. For the unintroduced reader, a hypergraph is exactly like a graph,
only it allows edges involving an arbitrary number of vertices (as opposed to just two). In other
words, given a set V of vertices, while a graph collects pairs (i.e., 2-sized subsets) of them as edges

E ⊆ P2(V ) := {V ′ ∈ 2V : |V | = 2}, a hypergraph is composed of arbitrary-sized subsets of vertices
as hyperedges F ⊆ P(V ) := 2V . To represent the protein interaction data discussed in Section 1.1.1,
if V denotes the set of proteins, then the set F (⊆ P(V )) of protein interactions (i.e. hyperedges)
would include subsets of proteins that are known to interact. Particularly, the set F would contain
the hyperedge F = {P,Q,R, S} as well, that captures the interaction between the four proteins
P,Q,R, S ∈ V . Apart from hypergraphs, other higher-order paradigms such as Galois structures,
simplicial complexes, etc. have also been used in the literature [48] for complex systems. Though
the literature on hypergraphs talks about various varieties thereof, we restrict ourselves to undirected,
homogeneous, and unweighted hypergraphs, both unipartite and bipartite (see Chapter 2 for more
details). We divide our thesis into three broad parts: hypergraphs and pairwise links (Chapters 3–4),
predicting higher-order relations (Chapters 5–7), and higher-order bipartite relations (Chapter 8). Let
us briefly introduce them one by one.

1.2.1 Hypergraphs and Pairwise Links
In practical scenarios, it is customary to convert a hypergraph network into a graph via clique ex-

pansion [3], i.e. replacing each hyperedge by a clique over its containing nodes. For example, a
co-authorship network is treated as a graph, wherein two collaborating authors form an edge. The same
is true for a number of other networks (protein interaction networks, co-actor networks, co-citation
networks, etc.), where, going by DRA, it is taken for granted that every relation would have two
entities; we call such relations “pairwise links”. Moreover, even though most networks (excepting
“pure” pairwise ones such as friend-friend social networks) have an underlying higher-order structure,
they are seldom treated as so, and are instead converted into graphs at the very beginning of an analysis
pipeline itself. Conclusively, the higher-order structure of these networks is ignored at large, and they
are dealt with using mere graphs.

We take knowledge of such networks’ underlying higher-order structure and for the first time,
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1. INTRODUCTION

study the latter’s effect on the subsequent graph-based network analysis in Chapter 3. As a result, we
make some surprising observations regarding neighborhood-based link prediction techniques in these
networks. For one, the underlying higher-order structure of hypergraph networks meddles with the

predictability of links via well-known link prediction heuristics. Motivated by the effect of hyperedges
on link prediction, in Chapter 4, we exploit the higher-order neighborhood structure directly to improve

existing node similarity heuristics and show improvements in link prediction scores. In addition, we
also introduce mathematical formulation to convert graph based node similarity scores to hypergraph
based ones. In summary, in this part, we have merely touched the field of hypergraphs, and have
focused on their effect on usual graph-oriented networks.

1.2.2 Predicting Higher-order Relations
Predicting the missing/future occurrence of a higher-order relation between a group of entities (also
referred to as the hyperedge/hyperlink prediction problem1 in the literature [121, 132, 11, 133]) is as
important as the well-known link prediction problem in networks [66]. For example, questions such as
the following:

• “Will four workers W1,W2,W3,W4 in a corporation be part of the same email in future”?

• “Will three authors A1,A2,A3 write a paper together eventually”?

• “Is a combination of three medicines M1,M2,M3 (but not a pair of them) harmful when prescribed
together”?

• “Will four movie actors A1,A2,A3,A4 work in the same movie”?

are of prime importance in their respective domains. However, the extent of predictability of a missing
or a non-existent future higher-order relation (or hyperedge) might vary from domain to domain, and
from dataset to dataset. Existing techniques to solve the hyperedge prediction problem also deal with
hypergraph embedding (latent-space embedding of nodes and/or hyperedges) as a by-product.

We first extensively discuss the effect of negative sampling on hyperlink prediction in Chapter 5,
since the problem is usually posed as a binary classification problem wherein hyperedges form the
positive class and non-hyperedges the negative class. Further, we also provide novel techniques to

sample the negative class and hence show how a seemingly insignificant pre-experimental negative
sampling step could make huge differences in the evaluation of prediction algorithms in the context
of hypergraphs. Then, in Chapters 6 and 7, we provide a couple of solutions – one based on matrix
completion, and the other a neural-network based one – to the hyperlink prediction problem. The

1We use terms “hyperlink prediction” and “hyperedge prediction” alternatively for higher-order relation prediction.
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first approach (the one in Chapter 6) provides a matrix completion based hyperedge prediction model

called C3MM, where we define and statistically establish an important hypothesis — that hyperedges

are mainly formed due to closures of open cliques. For the second technique (of Chapter 7), we
propose a novel paradigm for information flow between nodes and hyperedges of a hypergraph via

“node-to-subhyperedge-to-hyperedge”, which we show is more comprehensive than the usual node-to-
hyperedge assumption. This results in a deep learning architecture called Sub-Higher-Order Neural

Networks (SHONeNs), which uses a sub-hyperedge-based attention framework, thereby surpassing the

performance of the current state-of-the-art in hyperedge prediction (viz., Hyper-SAGNN [133]) and

other baselines by significant margins.

1.2.3 Higher-order Bipartite Relations
Whether a hypergraph is but a fancy reinvention-of-the-wheel or not, is a dilemmatic debate1. Mathe-
matically speaking, every hypergraph (V,F) (where V is a set of vertices and F ⊆ P(V ) is a collection
of hyperedges over them) could also be modeled as a bipartite graph (V, V ′,E) (a graph with two
disjoint sets V ∪V ′ of vertices, wherein only cross-edges from V ×V ′ are allowed). It is so since if we
take V := V and V ′ := F (dummy nodes) to be the disjoint vertex sets needed to form a bipartite graph,
we get the set of bipartite edges as E := {(v, F ) ∈ V ×F | v ∈ F}, thereby forming the corresponding
bipartite graph (V ∪ F,E). Such bipartite graph representations of vertices and higher-order relations
over them are known as Levi graphs [22, 117] (more informally, star expansions [3] of hypergraphs).
Moreover, since hypergraphs and their corresponding bipartite graph versions are inter-derivable, it
could easily be claimed that star expansions losslessly represent higher-order relations, something
that clique expansions (of hypergraphs into pairwise-relation based graphs via DRA) cannot. From
the Gestalt perspective, the dummy vertices in the star expansion of a hypergraph could viewed as
reifications [63] of hyperedges. Nevertheless, the fact that is clear from this discussion is that the
hypergraph paradigm could be considered a tool as good as bipartite graphs, to capture higher-order
relations.

However, this should not be the case since in the real world, there exist “higher-order bipartite

relations” as well. For example, “A collection of patients’ diagnoses involving (possibly multiple)
diseases and (possibly multiple) symptoms”, or “A collection of movie credits involving both cast
and crew members”, etc., constitute some higher-order bipartite relations. Had bipartite graphs (and
not hypergraphs) been used to denote higher-order relations, what would one resort to for those
higher-order relations that are themselves bipartite in the first place? A careful thought would reveal
that to capture such relations using graphs, special tripartite structures would be needed. Moreover,
modeling the prediction of such relations would also be tedious. We therefore model higher-order

1See, for example, this discussion on Mathematics Stack Exchange [57].
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bipartite relations using “bipartite hypergraphs” [140, 5] (those wherein each hyperedge is required to
contain at least one node from each node set1).

In Chapter 8, we first identify the bipartite hyperedge prediction problem for a special kind of

bipartite hypergraph: “per-fixed bipartite hypergraph” (one where we fix left and right hyperedges
throughout the learning paradigm). Then we propose a solution by learning a set-matching model for
set-of-sets. In the process, we argue that how prediction models that treat self- and cross-links using the
same attention parameters fail to discriminate between a positive class pattern (a bipartite hyperedge)
and a negative class one (a bipartite non-hyperedge). Eventually, we propose a cross-attention model

for hyperedge prediction in such hypergraphs, which hugely outperforms state-of-the-art algorithms

and other baselines. The apparent failure in discriminating between two classes when self- and
cross-attention parameters are shared, is due to a phenomenon we call the “positive-negative dilemma”,
which we discuss in detail in Chapter 8.

1.3 The Logical Flow of the Thesis
The realm of relations is vast, a fact that we depict in the sankey diagram in Figure 1.1. In other words,
the width of the top of the block (labeled RELATIONS) represents all existing concepts pertaining to
relations. It could be bifurcated broadly into HIGHER-ORDER, and TWO-ORDER RELATIONS,
as labeled in the diagram. While the proportion of areas allocated to higher- and two-order relations
could be inaccurate, we know for a fact that the former spans a broader and deeper set of concepts than
the latter. Chapters 5–8 exclusively deal with higher-order relations, where on the other hand, Chapters
3 and 4 comprise of almost equal proportions of both higher-order as well as two-order relations. As
seen in the flow diagram, concepts from higher-order relations, flow into four different tributaries,
which have little-to-nothing to do with pairwise relations. They have been described as follows:

• Bipartite Hypergraphs: We spend an ample amount of interest to deal with bipartite hypergraphs,
which forms the whole of Chapter 8.

• “Out of Scope”: The width of this block (Out of Scope) could be debated upon, and we do not
claim authority over it. But it sure denotes a huge portion from the area of higher-order relations
that we do not cover in this thesis.

For example, simple concepts such as community detection in hypergraphs, node centrality in

hypergraphs, node classification in hypergraphs, more applications of hypergraphs, directed

1Since a bipartite hypergraph is so scarcely studied in the literature, a single definition does not exist – a fact that can
be verified from a couple of references [140, 5] that define it in their own way. However, we insist on the “at least one node
from each node set” requirement for every hyperedge, and provide a formal definition in Chapter 2.
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hypergraphs, multi-way data analysis, tensor analysis for uniform hypergraphs, etc. to more com-
plicated ones such as heterogeneous hypergraphs, multi-hypergraphs, bipartite bihypergraphs,
hypergraph coloring, and many more concepts involving discrete mathematical structures are
beyond the scope of this thesis.

• Hyperlink Prediction: A huge portion of concepts from higher-order relations flow into the
domain of HYPERLINK PREDICTION — modeling and predicting the occurrence of higher-
order relations. We further divide it into negative sampling (Chapter 5), C3MM (Chapter 6), and
SHONeNs (Chapter 7), all of which exclusively deal with predicting hyperlinks.

• The fourth tributary has not been labelled; basically, it indicates the flow of concepts from

RELATIONS

HIGHER-ORDER
RELATIONS

TWO-ORDER
RELATIONS

LP

HYPERLINK
PREDICTION

Bipartite
Hypergraphs

(CHAPTER 8)

Negative
Sampling

(CHAPTER 5)

C3MM:
Clique Closure

Based
(CHAPTER 6)

Sub-Higher-Order
Based:

SHONeNs
(CHAPTER 7)

Groups
Skew
Pairs

(CHAPTER 3)

Node Similarity
Hypergraphs

(CHAPTER 4)

Out of
Scope

Out of Scope

Figure 1.1: A sankey diagram showing the logical flow of concepts in this thesis. The flow has been
extensively explained in the running text, with the two “Out of Scope” blocks uncovered into a few
example topics in Section 1.3. Please note that in actuality, the flow diagram is more comprehensive.
For example, neither do we cover all bipartite hypergraphs, nor all topics in hyperlink prediction,
something which the diagram says we do. We take liberty in not over-representing such details in this
diagram.
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1. INTRODUCTION

higher-order relations to pairwise ones, coming from the two-order relations (right) part.

The last two pipeline flows indicate the involvement of higher-order relations in explaining the working
of two-order ones, of which, only link prediction (LP) has been focused on. More specifically, in
Chapters 3 and 4, we study the effect of underlying hyperedges in the well-known problem of link
prediction involving pairwise links. A huge portion of two-order relations that involve merely graphs
is out of the scope of this thesis (denoted by Out of Scope on the right), covering topics such as node

centrality, node classification, graph algorithms, community detection, graph embedding, etc.
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1. INTRODUCTION

1.4 Research Contributions
1. Hypergraphs and Pairwise Links

1 (a) Elucidate both theoretically as well as empirically, that underlying higher-order relations
have a dramatic effect on their pairwise counterparts, in that evaluation on the latter be-
comes biased; also, provide solutions to undo the effect by re-basing evaluation criteria.

1 (b) Formulate a mechanism to utilize higher-order neighborhood to aid node similarity
heuristics, thereby grounding high-level concepts and performing extensive experiments
to support the thesis; furthermore, exhibit novel data preparation techniques for fairness.

2. Predicting Higher-order Relations

2 (a) Emphasize the importance and analyze the effect of negative sampling in higher-order
relation prediction, contributing also towards two highly useful algorithms for the same.

2 (b) Propose and rigorously test a clique-closure based hypothesis; then utilize it for predict-
ing higher-order relations, thereby improving the state-of-the-art.

2 (c) Establish a novel sub-higher-order paradigm for information flow in hypergraphs, for-
mulate a sub-optimal heuristic for the same, and finally, further improve higher-order
relation prediction via a deep learning model based on sub-hyperedges.

3. Higher-order Bipartite Relations

3 (a) For the first time, introduce higher-order bipartite relations in network science, intro-
duce datasets for higher-order bipartite relations and propose a cross-attention based
relation prediction model which works way better than its competitors.

3 (b) Uncover and reason for the shortcomings in usual models when positive and negative
classes share features – a trait we observe in prediction of bipartite higher-order rela-
tions.
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1. INTRODUCTION

Table 1.1: Notations used in this thesis

Symbol Definition
P(·), Pk(·) Power set and k-power set of a set
<slex Shortlex order for subsets of a set

V = {v1, . . . , v|V |} Set of (left) nodes
E = {e1, . . . , e|E|} ⊆ P2(V ) Set of edges
G = (V,E) Graph
G = (V,E, w) Weighted graph
G = (V,E, τ) Temporal graph
F = {F1, . . . , F|F|} ⊆ P(V ) Set of hyperedges
H = (V,F) Hypergraph
H = (V,F, τ) Temporal hypergraph
A ∈ R|V |×|V | Adjacency matrix
S ∈ R|V |×|F| Incidence matrix of hypergraph
Γ : V → P(V ) Set of neighbors of a node
d : V → R Degree of a node
Γ̃ : V → P(F) Set of hyperneighbors of a node
d̃ : V → R Hyperdegree of a node
η(H), η∗(H) Clique and star expansions of hypergraph H

V ′ = {v′1, . . . , v′|V ′|} Set of right nodes
Bsim = {B1, . . . , B|Bsim|} ⊆ P(V ∪ V ′) Set of simple bipartite hyperedges
Hsim = (V ∪ V ′,Bsim) Simple bipartite hypergraph

ρtr, ρotr Train and observed split-ratio
ν Negative-to-positive ratio
T, Ttr, Tte Timeline, train-period, test-period
Totr, Tutr Observed/Unobserved train periods

Etr,Ete Train and test edges
Eotr,Eutr Observed/Unobserved train edges
Ê, Ête, Êutr Total, test, and unobserved train non-edges
Dunsup = (Gtr,Ete, Ête) LP dataset for unsupervised learning
Dsup = (Gotr,Eutr, Êutr,Ete, Ête) LP dataset for supervised learning
π : Ete ∪ Ête Unsupervised link predictor
πθ : Ete ∪ Ête Supervised link predictor with parameters θ

Ftr,Futr, F̂utr,Fte, F̂te Train/test hyperedges/non-hyperedges
D̃unsup = (Htr,Fte, F̂te) HLP dataset for unsupervised learning
D̃sup = (Hotr,Futr, F̂utr,Fte, F̂te) HLP dataset for supervised learning
π̃ : Fte ∪ F̂te Unsupervised hyperlink predictor
π̃θ : Fte ∪ F̂te Supervised hyperlink predictor with parameters θ
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Chapter 2

Background Review

“The mathematical concept of a set can be used as the foundation for all known mathematics.

. . . What may be surprising is not so much that sets may occur as elements, but that for

mathematical purposes no other elements need ever be considered.”

∼ Paul Richard Halmos

H
IGHER-ORDER relations have not been studied in the literature as aggressively as pairwise relations,
and so, mere intuitive notions might hinder our progress. Moreover, there are more than one

mathematical tools to ground the concept of higher-order relations, and their usage varies from one
piece of work to another. For example, while Xu et al. [121], Tu et al. [107], Zhang et al. [133], etc. use
hypergraphs, Benson et al. use simplicial complexes in one of their works [11], and sequences-of-sets
in another [12]. We in this thesis, use “hypergraphs” as a tool to capture higher-order relations and use
the terms “hypergraph network”, “higher-order network” almost exchangeably. Similar is our handling
of the terms “higher-order relation” and “hyperedge”, both of which refer to a simultaneous connection
between multiple objects. In this chapter, we introduce and fix certain definitions and notations used in
the whole thesis. However, wherever definitions and notations different from what we introduce here
arise in a particular chapter, we explicitly mention them in the chapter. For one, while the symbol “V ”
denotes the set of vertices in the whole thesis, its elements could be denoted by either “{v1, v2, . . . , vn}”
or by “{1, 2, . . . , n}” – whichever seems convenient. Nevertheless, such minor change of notation
would be explicitly mentioned in the respective chapters at appropriate places. More specific notations
– that involving core concepts of our research – have already been summarized in Table 1.1.

2.1 Generic Concepts
For a set S, we denote the collection of all of its subsets – its power set – by P(S), and the collection
of its k-sized subsets by Pk(S). We also define two forms of the indicator function: one for a logical
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2. BACKGROUND REVIEW

statement S, and the other for a set S, as follows:

1(S) =

0, if S is FALSE

1, if S is TRUE
1S(x) =

0, if x /∈ S
1, if x ∈ S

(2.1)

We also define a variant of the “Shortlex” order [100], as follows:

Definition 2.1 (Shortlex Order). For a setX with elements indexed asX = {x1, . . . , xn}, the shortlex
order <slex on its powerset 2X is defined as (X1, . . . , X2n), where for Xi, Xj ⊆ X , we have:

1. If |Xi| 6= |Xj|, then Xi <slex Xj ⇐⇒ |Xi| < |Xj|.

2. If |Xi| = |Xj| = s, and if Xi := {xi1 , . . . , xis} and Xj = {xj1 , . . . , xjs}, s.t. 1 ≤ i1 < · · · <
is ≤ n and 1 ≤ j1 < · · · < js ≤ n, then we have:

Xi <slex Xj ⇐⇒ (i1, . . . , is) <lex (j1, . . . , js),

where <lex is the lexicographic order.

2.2 Graphs and Hypergraphs
Given a set V of vertices or nodes, a graph over it is defined as an ordered pair G := (V,E), where
E ⊆ P2(V ) denotes the collection of edges over V . Occasionally, a graph could be edge-weighted;
this is denoted by G = (V,E, w), where w : E → R+ assigns a real-number weight to each edge. A
graph is non-temporal by default, but if there exists a chronological order over its edges, it becomes
a temporal graph, wherein time information is denoted using a mapping τ : E → R+; a temporal
graph is therefore a triplet G = (V,E, τ). Not to mention, a weighted temporal graph is a quadruplet
G = (V,E, w, τ).

A hypergraph over V , on the other hand, is an ordered pair H = (V,F), where F ⊆ P(V )

denotes the collection of hyperedges over V . A similar temporal version – H = (V,F, τ) – could
also be defined, where τ : F → R+. When not specified explicitly, we have V = {v1, v2, . . . , v|V |},
E = {e1, e2, . . . , e|E|}, and F = {F1, F2, . . . , F|F|} denoting nodes, edges, and hyperedges respectively.

Although the definitions of weighted/unweighted temporal/non-temporal graphs and hypergraphs is
enough to capture relations, some other notions that help study properties thereof follow. The adjacency
matrix A ∈ R|V |×|V | of a graph is defined as Aij = 1E({vi, vj}), and if the graph is weighted, a
weighted version could also be defined, asAij = w({vi, vj})·1E({vi, vj}). While the adjacency matrix
gives a lossless representation of a graph, for a hypergraph the same loses information about hyperedges.
Hence, we use an incidence matrix S ∈ R|V |×|F| for it, defined by Sij = 1Fj(vi), where rows and
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2. BACKGROUND REVIEW

columns correspond to vertices and hyperedges respectively. While the ideas of neighborhood and
degree are straightforwardly defined for graphs, as Γ : V → P(V ), v 7→ {u ∈ V | {u, v} ∈ E} and
d : V → R, v 7→ |Γ(v)| respectively, for a hypergraph, these concepts ought be more comprehensive.
The neighborhood for a hypergraph is defined as Γ(v) := {u ∈ V | ∃F ∈ F s.t. {u, v} ⊆ F}, and
degree as in graphs. For both graphs as well as hypergraphs, neighbors of a node refer to the set
of vertices adjacent to it, and its degree is simply the number of such neighbors. A couple of more
neighborhood (rather, hyperneighborhood) notions: hyperneighbors and hyperdegree are also defined
for a hypergraph, as Γ̃ : V → P(F), v 7→ {F ∈ F | v ∈ F} and d̃ : V → R, v 7→ |Γ̃(v)| respectively,
that involve incident hyperedges and not adjacent vertices.

While equivalent notions such as Levi graphs had been defined by earlier literature as well Agarwal
et al. [3] define many mechanisms to convert hypergraphs into graphs, two of which are clique
expansion and star expansion of a hypergraph. Formally, they are defined as follows (please note that
we use the symbol ‘η’ (eta) to stand for “expansion”).

Definition 2.2 (Clique Expansion). The clique expansion graph η(H) of a hypergraph H = (V,F) is

defined as η(H) := (V, η(F)), where η(F) :=
⋃
F∈F η(F ), where for F ∈ F, we have η(F ) := P2(F ).

In other words, the clique expansion of H is:

η(H) := (V, η(F)) :=

(
V,
⋃
F∈F

η(F )

)
:=

(
V,
⋃
F∈F

P2(F )

)
, (2.2)

which is a usual graph with two vertices being connected if and only if they have at least one incidence

hyperedge in common.

Definition 2.3 (Star Expansion). The star expansion graph η∗(H) of a hypergraph H = (V,F) is

defined as a bipartite graph η∗(H) := (V∗,E∗), where V∗ := V ∪ F and E∗ := {{v, F} | v ∈ V, F ∈
F s.t. v ∈ F}. In other words, the star expansion of H is:

η∗(H) := (V∗,E∗) := (V ∪ F, {{v, F} | v ∈ V, F ∈ F s.t. v ∈ F}) , (2.3)

which is a bipartite graph with the original vertices and hyperedges as left and right node-sets (see

Section 2.6) respectively, and a vertex gets connected to a hyperedge if and only if the latter is incident

on the former.

2.3 Node Similarity Heuristics
Here, we define certain popular node-similarity metrics for graphs, which are also used as link
prediction heuristics [66, 41].
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2. BACKGROUND REVIEW

Definition 2.4 (Common Neighbor (CN) Score).

CN({u, v}) := |Γ(u) ∩ Γ(v)| . (2.4)

Definition 2.5 (Jaccard Coefficient (JC) Score).

JC({u, v}) :=


0 if d(u) = d(v) = 0

|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)| if d(u) > 0 or d(v) > 0.

(2.5)

Definition 2.6 (Association Strength (AS) Score).

AS({u, v}) :=


0 if d(u) = 0 or d(v) = 0

|Γ(u) ∩ Γ(v)|
d(u) · d(v)

if d(u) > 0 and d(v) > 0.
(2.6)

Definition 2.7 (Cosine Similarity (CS) Score).

CS({u, v}) :=


0 if d(u) = 0 or d(v) = 0

|Γ(u) ∩ Γ(v)|√
d(u) · d(v)

if d(u) > 0 and d(v) > 0.
(2.7)

Definition 2.8 (NMeasure (NM) Score).

NM({u, v}) :=


0 if d(u) = 0 and d(v) = 0

|Γ(u) ∩ Γ(v)|√
d(u)2 + d(v)2

if d(u) > 0 or d(v) > 0.
(2.8)

Definition 2.9 (MinOverlap (MnO) Score).

MnO({u, v}) :=


0 if d(u) = 0 or d(v) = 0

|Γ(u) ∩ Γ(v)|
min{d(u), d(v)} if d(u) > 0 and d(v) > 0.

(2.9)

Definition 2.10 (MaxOverlap (MxO) Score).

MxO({u, v}) :=


0 if d(u) = 0 and d(v) = 0

|Γ(u) ∩ Γ(v)|
max{d(u), d(v)} if d(u) > 0 or d(v) > 0.

(2.10)
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Definition 2.11 (Preferential Attachment (PA) Score).

PA({u, v}) := d(u) · d(v). (2.11)

Definition 2.12 (Adamic/Adar (AA) Score).

AA({u, v}) :=
∑

w∈Γ(u)∩Γ(v)

1

log d(w)
. (2.12)

Definition 2.13 (Resource Allocation (RA) Score).

RA({u, v}) :=
∑

w∈Γ(u)∩Γ(v)

1

d(w)
. (2.13)

Definition 2.14 (SimRank (SR) Score).

SR({u, v};C) :=



1 if u = v

0 if d(u) = 0 or d(v) = 0
C

d(u) · d(v)

∑
u′∈Γ(u)
v′∈Γ(v)

SR({u′, v′}) if u 6= v.
(2.14)

Definition 2.15 (Pearson Correlation (PC) Score).

PC({u, v}) :=


0 if d(u) = 0 or d(v) = 0

|V | · |Γ(u) ∩ Γ(v)| − d(u) · d(v)√
d(u) · d(v) · (|V | − d(u)) · (|V | − d(v))

if d(u) > 0 and d(v) > 0.
(2.15)

2.4 Link Prediction

2.4.1 Temporal Graphs
Given a temporal graph G = (V,E, τ), define its timeline as T := τ(E) = {τ(e) | e ∈ E}. Now,
define a train split-ratio ρtr ∈ [0, 1] used to partition the timeline into train and test periods Ttr and Tte
respectively in a way that |Ttr| ≈ ρtr · |T | and (ttr, tte) ∈ Ttr × Tte =⇒ ttr < tte. Next, the set E of
edges is split into train edges Etr = {e ∈ E | τ(e) ∈ Ttr} and test edges Ete = {e ∈ E | τ(e) ∈ Tte}.
Further, we split the train period into observed and unobserved train periods Totr and Tutr respectively
using another parameter observed split-ratio ρotr ∈ [0, 1], that partitions it in the same manner as
above (i.e., in a way that |Totr| ≈ ρotr · |Ttr| and (to, tu) ∈ Totr × Tutr =⇒ to < tu). This partitions
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the train edges Etr into observed train edges Eotr := {e ∈ Etr | τ(e) ∈ Totr} and unobserved train
edges Eutr := {e ∈ Etr | τ(e) ∈ Tutr}. Hence, we have three different kinds of edges with us –
observed train (Eotr), unobserved train (Eutr), and test (Ete); not-to-mention, there is a set of train edges
Etr = Eotr ∪Eutr as well. We also define two graphs Gotr = (V,Eotr) and Gtr = (V,Etr). In real-world
networks, the non-edges – node pairs not connected directly by an edge – are much higher in number
than edges, and need be sub-sampled for a practical link prediction exercise to be possible; we fix a
negative-to-positive ratio ν ∈ N that decides how many of them to sample. More specifically, the set
of all available non-edges could be defined as Ê := P2(V ) \ E, of which ν · |Ete| could be randomly
sampled as test non-edges Ête, and ν · |Eutr| of them as unobserved train non-edges Êutr.

Once we have these items with us, we can prepare two kinds of LP dataset “packages”: (i)
Dunsup := (Gtr,Ete, Ête) for unsupervised LP (with no parameters to be learnt) and (ii) Dsup :=

(Gotr,Eutr, Êutr,Ete, Ête) for supervised LP. Now, we are in an ideal position to define the temporal
link prediction problem.

2.4.2 Non-Temporal Graphs
Given a non-temporal graph G = (V,E), and the train split-ratio ρtr ∈ [0, 1], randomly sample
dρtr · |E|e of the edges from E as train edges Etr, and the remaining as test edges Ete := E \ Etr.
With the help of another parameter called observed split-ratio ρotr ∈ [0, 1], randomly sample the train
edges into ρotr · |Etr| observed train edges Eotr and the rest are collected as unobserved train edges
Eutr := Etr \ Eotr. Non-edges Êutr and Ête are sampled as before. Ultimately, we package LP datasets
Dunsup and Dsup as before.

Definition 2.16 (Unsupervised Link Prediction [66]). Given LP dataset Dunsup = (Gtr,Ete, Ête), the

unsupervised link prediction problem is to develop a link predictor π : Ete ∪ Ête → R that uses the

train graph Gtr to compute LP scores π({u, v}) for each pair {u, v} in such a way that edges get

higher scores than non-edges. That is,

max
π∈REte∪Ête

Pr(π({u, v}) > π({û, v̂}) | {u, v} ∈ Ete, {û, v̂} ∈ Ête) (2.16)

Definition 2.17 (Supervised Link Prediction [4]). Given LP dataset Dsup = (Gotr,Eutr, Êutr,Ete, Ête),

the supervised link prediction problem is to train a link prediction model πθ : Ete ∪ Ête → R
parameterized by θ using the observed train graph Gotr and training data (Eutr, Êutr) such that each

test edge gets a higher score than a test non-edge. That is,

max
πθ∈REte∪Ête

Pr(πθ({u, v}) > πθ({û, v̂}) | {u, v} ∈ Ete, {û, v̂} ∈ Ête) (2.17)
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Be it supervised or unsupervised, if the data is prepared from a temporal graph, we call the
LP problem a temporal link prediction problem, and for a non-temporal graph, it is called a non-
temporal/structural link prediction problem.

2.5 Hyperlink/Hyperedge Prediction
Given a temporal/non-temporal hypergraph, notions similar to the ones for link prediction (ref. Sec-
tion 2.4) could be defined. Essentially, at the end of the data preparation pipeline, we get hyperlink
prediction datasets D̃unsup = (Htr,Fte, F̂te) and D̃sup = (Hotr,Futr, F̂utr,Fte, F̂te) for unsupervised
and supervised scenarios respectively.

Definition 2.18 (Unsupervised Hyperlink Prediction). Given hyperlink prediction dataset D̃unsup =

(Htr,Fte, F̂te), the unsupervised hyperlink prediction problem is to develop a hyperlink predictor

π̃ : Fte ∪ F̂te → R that uses the train graph Htr to compute LP scores π̃(F ) for each subset F ⊆ V in

such a way that hyperedges get higher scores than non-hyperedges. That is,

max
π̃∈RFte∪F̂te

Pr(π̃(F ) > π̃(F̂ ) | F ∈ Fte, F̂ ∈ F̂te) (2.18)

Definition 2.19 (Supervised Hyperlink Prediction). Given LP dataset D̃sup = (Hotr,Futr, F̂utr,Fte, F̂te),

the supervised hyperlink prediction problem is to train a hyperlink prediction model π̃θ : Fte∪F̂te → R
parameterized by θ using the observed train hypergraph Hotr and training data (Futr, F̂utr) such that

each test hyperedge gets a higher score than a test non-hyperedge. That is,

max
π̃θ∈RFte∪F̂te

Pr(π̃θ(F ) > π̃θ(F̂ ) | F ∈ Fte, F̂ ∈ F̂te) (2.19)

Be it supervised or unsupervised, if the data is prepared from a temporal hypergraph, we call the
hyperlink problem a temporal hyperlink prediction problem, and for a non-temporal hypergraph, it is
called a non-temporal/structural hyperlink prediction problem.

2.6 Bipartite Structures
Given two disjoint sets V and V ′ of nodes for bipartite relations to be defined, we name them “left”
and “right” node-sets respectively. In this scenario, the set E ⊆ {{v, v′} | v ∈ V, v′ ∈ V ′} refers to
a collection of bipartite edges. Hence, we get a bipartite graph G = (V ∪ V ′,E), which essentially
connects a left node to a right one, forming cross-relations between the two node sets. Contrasting it
with higher-order bipartite relations, we define the following:

Definition 2.20 (Simple Bipartite Hypergraph). Given left and right node sets V and V ′ respectively,
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a simple bipartite hypergraph is defined as an ordered triplet Hsim = (V ∪ V ′,Bsim), where

Bsim ⊆ {B ∈ P(V ∪ V ′) | B ∩ V 6= ∅ and B ∩ V ′ 6= ∅} (2.20)

denotes a collection of simple bipartite hyperedges.
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Chapter 3

Groups Skew Pairs: Effect of Hypergraphs
on Pairwise Links

“People most strenuously seek to evaluate performance by comparing themselves to others,

not by using absolute standards.” ∼ Leon Festinger

L
INK prediction in networks is a well-known problem, and has been researched upon for about
two decades now [2, 66]. The most widely used approaches to solving this problem are based

on heuristics such as Common Neighbors (CN) – more the common neighbors of a pair of nodes,

higher their linkage probability. In this chapter, we investigate this problem in the presence of higher-
order relations (essentially, hypergraphs). What has been surprising is that neighborhood based link
prediction heuristics such as CN work very well – and even better in the presence of higher-order
relations. However, as we prove later, this is due to the CN-heuristic overestimating its prediction
abilities in the presence of higher-order relations. We prove this statement by considering a theoretical
latent space model for higher-order relations and by showing that area under ROC (AUC) scores for
CN are higher than could be achieved from the model. Empirically, we observe that the presence of
underlying hyperedges indeed skews prediction scores for link prediction heuristics. Moreover for
simple examples, we also provide theoretical justifications. Further, we extend our observations to
other similar link prediction algorithms such as Adamic Adar, and observe that the mere presence of
hyperedges in a network as an underlying component distorts its AUC. Finally, we use these insights to
propose an adjustment factor to the evaluation by taking into conscience that a random graph would
only have a best AUC of 50%. Eventually, we see that this adjustment factor allows for a better
estimation of generalization scores by providing an adjusted AUC for each method-dataset pair.
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3. GROUPS SKEW PAIRS: EFFECT OF HYPERGRAPHS ON PAIRWISE LINKS

3.1 Introduction
The problem of link prediction (LP) is described as follows: “Given a set of objects V , and a set
E ⊆ P2(V ) of (partial) links among them, predict new/missing links among V ”. This is naturally
modelled as a simple graph G = (V,E). Ever since the seminal work on this problem [66], it has seen
constant advancements [113, 72]. Standard LP algorithms are based on heuristics such as Common
Neighbors (CN) [78], which posits that more number of common neighbors imply a higher chance
of link between a pair of nodes, or Adamic Adar (AA) [2], a normalized version of the CN approach.
These heuristics are known to work dramatically well for simple datasets [66, 89, 21]. In this chapter,
we consider the LP problem (and algorithms for the same) in the presence of higher-order relations.

We show that in the presence of higher-order relations, LP algorithms do not generalize well.
Moreover, we prove that evaluation of LP algorithms in such scenarios overestimates their prediction
capability. As a simple example, consider the network in Figure 3.1. Let it consist of 5 vertices named
a–e. Also assume that it consists of two hyperedges {a, b, c} and {d, e}, appearing with probabilities
φ1 = 0.6 and φ2 = 0.6 respectively. This has been depicted in Figure 3.1 using the blue and green
enclosures respectively. It is to be noted that by “probability of edge {b, c} (i.e., φ)”, we do not mean
the predicted probability, but the real probability of existence of this edge as per a (Erdos-Renyi)
random graph. Let us apply CN over this example by predicting links using the leave-one-out method
of evaluation and subsequently compute its AUC score.

In clearer words, we first assume that all edges {a, b}, {b, c}, {a, c}, and {d, e} exist. Then we take
all pairs from {a, b, c, d, e} and find their predicted scores (the CN matrix Fig. 3.1b) using leave-one-
out method. And we finally find the AUC by comparing it with the ground truth (the adjacency matrix).
Hence, CN asserts that link b ∼ c is more probable than link d ∼ e since the former has more common
neighbors than the latter. However this is not the case since both these links occur with probability 0.6.
Moreover, the evaluation of CN for this example does not take this into account, thereby estimating the
predictive AUC score to be 0.875. While actually, one can only obtain an AUC of 0.5 – a fact that
can be verified empirically. Thus CN overestimates its own predictive capabilities. In this chapter,
we formalize these notions and provide both theoretical and empirical support to these observations.
Moreover, we also provide a novel evaluation method, proposing an adjustment-factor to correct the
predictive scores.

In Section 3.2, we propose a simple mathematical model for higher-order relations, which is used
for analysis in the rest of the chapter. For completeness, we compare this to existing latent space
models for link prediction as well. Then in Section 3.3, we use the model in Section 3.2 to prove
empirically that the LP heuristics CN and AA overestimate their generalization-ability. This is justified
theoretically considering simple cases. In Section 3.4, we propose a new evaluation scheme which
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Figure 3.1: Figure illustrating the effect of higher-order relations. (a) A toy hypergraph where set
of vertices is {a, b, c, d, e}. {a, b, c} denotes one hyperedge (in blue) which appears with probability
φ1 = 0.6 and {d, e} is another one (in green) appearing with the same probability φ2 = 0.6. The four
arcs a ∼ b, b ∼ c, a ∼ c, and d ∼ e (in black) denote edges of the graph formed by the hypergraph’s
clique expansion [3], whose adjacency matrix has also been shown. (b) CN scores are calculated using
the leave-one-out method and are shown as a matrix. Also shown is the ROC curve of CN w.r.t. the
Adjacency matrix in (a), which has an AUC of 87.5%.

takes into account the higher-order relations. Finally in Section 3.6 we discuss the implications of the
work done in this chapter.

3.1.1 Key Contributions
1. We prove that higher-order relations skew link prediction. In particular, we show that standard

heuristics such as CN and AA do not generalize well in the presence of higher-order relations.
Moreover, we show that the evaluation of these methods also do not take this into consideration,
thereby overestimating their ability to predict links.

2. To provide better estimates of the generalization performance, we propose a novel approach to
compute an adjustment factor to correct the generalization scores.

3.2 A Mathematical Model for Higher-Order Relations
In this section, we provide a simple model for modelling higher-order relations, which is used in the
rest of the chapter for analysis and simulation. This has been adapted from Turnbull et al. [108], the
main difference being our assumption that the latent space is fixed. Recall that to specify a hypergraph,
one needs to specify the set of objects V and the subsets of V chosen to be hyperedges, F ⊆ P(V ).

3.2.1 Model Formulation
Let V = {1, 2, · · · , n} denote a set of objects, wherein for each element i ∈ V , assume there exists
an underlying vector ui in the latent space Rd. To model the hyperedges in this space, we assume
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that their sizes/cardinalities (number of objects in a hyperedge) lie in the set {1, 2, · · · , k}, where
1 ≤ k ≤ n. Let r1, r2, · · · , rk ∈ R be called as the radii corresponding to hyperedge sizes 1, 2, · · · , k
respectively. As per our model, we define a subset F ∈ P(V ) to be a “potential hyperedge” if and only
if there exists a ball of radius r|F | encompassing the set of latent vectors of its containing objects. That
is for a given subset F ∈ P(V ), we have:

F ∈ F ⇐⇒ ∃x ∈ Rd s.t. {ui}i∈F ⊆ B
(
x, r|F |

)
, (3.1)

where F denotes the set of potential hyperedges. It is unlikely that all the potential hyperedges belong
to the final hypergraph. Hence, we introduce probabilities φ1, φ2, · · · , φk ∈ [0, 1] corresponding to
hyperedge sizes 1, 2, · · · , k respectively. The final set of hyperedges would then be given by:

F ∈ F ⇐⇒ F ∈ F and Bernoulli(φ|F |) = 1, (3.2)

that is, a potential hyperedge would be in the final set of hyperedges with probability φ|F |.
To generate a hypergraph using the model above, one can start with an set of arbitrary representation

vectors U = {u1,u2, . . . ,un}, one for each node, say from a normal distribution with mean 0d (zero
vector of size d) and co-variance Id (identity matrix of size d× d), and pick r to be the fixed percentiles
of all the pairwise distances. The hyperedges are generated using:

1. Set s = 2, and F = {}.

2. Start with radius rs, and select all groups with distance ≤ 2rs as s-sized hyperedges and add
them to F.

3. Obtain the cliques of size s in this hypergraph.

4. Repeat steps 2 and 3 above for radii of a higher order (s > 2) to obtain the set of potential
hyperedges for all sizes 2, 3, . . . , k, and ultimately get F.

5. Finally, select each potential hyperedge F ∈ F with a probability φ|F | to get the set of final
hyperedges F.

Refer to Figure 3.2 for an illustration of the foregoing procedure. This procedure generates a Vi-

etoris–Rips Complex [84], which is equivalent to a Čech complex [36, 28, 108]. Moreover, there exist
faster algorithms to achieve this as well [139]. We do not further elaborate on the Čech complex nature
of our model, which could be found in Turnbull et al [108], and limit our study to its role in explaining
hypergraphs’ effect on link prediction.
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Figure 3.2: An illustration of the hypergraph latent space model described in Section 3.2 for ten
vertices 1–10. (a) The 2-dimensional representation U of vertices. (b) Radii r = (r2, r3) are picked
and potential hyperedges F are generated: four 2-sized hyperedges {0, 4}, {2, 5}, {3, 9}, {4, 7} w.r.t.
radius r2, and one 3-sized hyperedge {0, 1, 4} w.r.t. radius r3. Note the balls of radii r2 (blue solid) and
r3 (red dotted) encompass vertices that form the hyperedges. (c) Finally, hyperedges F are sampled
from F via distribution Φ; in this case, we have F = {{0, 4}, {3, 9}}.

3.2.2 Relation to Hoff’s Latent Space Model
Classically, link prediction in simple graphs has been modelled using what we call the Hoff’s model,
which is described in Hoff et al. [45]. Authors in Sarkar et al. [89] use this model to provide theoretical
justifications to three LP heuristics. However, as we shall shortly see, Hoff’s model underestimates
the higher-order relations. Basically, it assumes that two vertices i and j are linked to each other with
probability

P (i ∼ j) =
1

1 + exp(α(‖ui − uj‖ − γ))
, (3.3)

where α and γ are the model’s parameters and ui and uj , the vertices’ latent vectors. Thus, a hyperedge
F ∈ F would show its existence via Hoff’s model if all 2-subsets of F (i.e., edges comprising the
clique over nodes in F ) get selected by the model. We have,

P (i ∼ j,∀i, j ∈ F, i 6= j) =
∏
i,j∈F
i 6=j

P (i ∼ j) =
∏
i,j∈F
i 6=j

1

1 + exp(α(dij − γ))
, (3.4)

where dij := ‖ui − uj‖. Observe that if |F | = k, then this has k(k − 1)/2 factors in the product
and thus reduces as O(1/Ck(k−1)/2) for some constant C > 1. Thus, the number of hyperedges
reduces exponentially w.r.t. hyperedge size k according to Hoff’s model. However, in most real-world
hypergraphs, the number of hyperedges have been observed to follow a power law, 1/kζ as shown in
Figure 3.3a, where ζ > 0 varies from domain to domain. Hence, we know that Hoff’s model does
not capture higher-order relations well. Another implication of this observation is that Hoff’s model
also underestimates number of long distance edges. To illustrate this, we compare the probabilities of
generating an edge of distance d by both the models. We show this for four choices of Φ in Figure 3.3b.
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Figure 3.3: (a) Hyperedge size (|F | = k) distribution in a few real-world datasets. Each distribution
is fitted with a power-law 1/(kζ) truncated between 2 and 10, with best-fit ζ-values being as follows:
email-Enron: 2.58, contact-high-school: 3.43, contact-primary-school: 2.83, NDC-substances: 0.91.
More details about the datasets are available in Table 3.1. (b) Edge-generation probabilities plotted
against distance between (the latent space representations of) incident nodes thereof. We consider
different choices for φk and look at the distribution of the edges: φ(1)

k = 1/k2, φ(2)
k = 1/(1 + eα(rk−γ)),

φ
(3)
k = 0.1, φ(4)

k as per F. The latent space U is generated using a 2-dimensional normal distribution
with mean 02 and covariance I2 (identity matrix of size 2× 2). The radii are picked to be the 1-, 5-, 9-,
and 13-percentiles of all the distances between the points. Observe that for large distances (ranging
between 0.4–0.6), Hoff’s model underestimates the number of edges.

Remark: The choices of Φ are dictated by conventional wisdom. (i) φ(1)
k := 1/k2 is used since in real

datasets, a power law size distribution is observed. (ii) φ(2)
k := 1/(1 + exp(α(rk − γ))) is used since

this is the probability that an edge with distance rk is picked. (iii) For completeness, we also consider
φ

(3)
k = 0.1. (iv) Another option is to take φ(4)

k as per the size distribution in F.

3.3 Effect on the Evaluation of Link Prediction
In this section, we shall use the model from Section 3.2 to analyze the performance of the LP heuristics
- Common Neighbors (CN) and Adamic Adar (AA). Specifically, we show that these heuristics

overestimate their ability to predict links.

3.3.1 Capturing the Generalization Error
Recall that the hypergraph model uses a triplet (U, r,Φ) of vertex representation vectors U , size-specific
radii r, and hyperedge selection probability distribution Φ to obtain the hypergraph H = (V,F). This is
converted to a simple graph η(H) using clique expansion [3]. We then have the following proposition:
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Proposition 3.1. In the model described in Section 3.2, we have

P (i 6∼ j) =
∏
k

(1− φk)Sk(i,j), (3.5)

where Sk(i, j) is the number of k-sized hyperedges in F which contain both vertices i and j given U

and r. Clearly, we also have

P (i ∼ j) = 1−
∏
k

(1− φk)Sk(i,j). (3.6)

Proof. Given i, j ∈ V , and F ∈ F, define Sk(i, j, F ) := 1 if F has {i, j} as a subset of its vertices;
otherwise, Sk(i, j, F ) = 0. We hence have Sk(i, j) =

∑
F∈F Sk(i, j, F ). Note that the event (i 6∼ j)

holds if and only when all the events (i 6∼ j, Sk(i, j, F ) = 1) for all k hold and each of these events are
mutually independent, a fact known from the model. Hence,

P (i 6∼ j) =
∏
F∈F

P (i 6∼ j, Sk(i, j, F ) = 1). (3.7)

Now, since Sk(i, j, F ) is either 1 or 0, and depends on U and r, it is independent of the event (i 6∼ j).
Hence we have,

P (i 6∼ j) =
∏
F∈F

P (i 6∼ j | Sk(i, j, F ) = 1) · Sk(i, j, F )

=
∏
k

(1− φk)Sk(i,j).

Using Proposition 3.1 one can compute the probability of a link between two vertices i and j.

3.3.2 The Behavior of Link Prediction Heuristics
On the other hand, the LP heuristics CN and AA dictate that this probability is proportional to
the number of common neighbors. Figure 3.4 shows the scatter plots between the AUC scores
obtained from the model and those by the LP heuristics. Observe that in several cases (marked red)
the generalization performance as estimated by the LP heuristics is higher than the ground truth
probabilities. However, theoretically, the generalization performance of any algorithm cannot be better

than the one obtained using the estimates in eq. (3.7). This shows empirically that LP heuristics such
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Figure 3.4: Generalization performances of heuristic LP methods. Observe that in several cases (the
ones marked in red), the generalization performance predicted by both CN and AA is higher than
the actual one derived from the model. This shows that in presence of hyperedges, existing methods
overestimate the generalization performance.

as CN/AA overestimate their ability to predict links.
To understand better why this is the case, consider two scenarios: (a) A simple graph without

higher-order relations as shown in Figure 3.5a, and (b) A hypergraph with a single hyperedge of size 3

as shown in Figure 3.5b.

a b

c

φ2 φ2

φ2

(a)

a b

c φ3

(b)

Figure 3.5: Example hypergraphs. Both the examples consist of 3 vertices a, b, c. Assume that the set
of potential hyperedges is F = {{a, b}, {a, c}, {b, c}, {a, b, c}}, and hyperedge-selection probabilities
are Φ = (φ2, φ3). (a) The hypergraph where the three 2-edges are possible with probability φ2 > 0
(and φ3 is fixed to zero). (b) The hypergraph where the 3-edge is possible with probability φ3 > 0 (and
φ2 is set to zero). We have that the AUC scores of the model for CN match in (a), which is equal to 0.5.
However in (b), we have that the AUC score of CN is 1, while the AUC score from the model is just
0.5. Thus, CN overestimates its ability to predict the links in presence of higher-order relations.
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We now closely analyze the AUC scores of the CN heuristic. For this, we require the following
notation: Let Z∼ := (CN | (i ∼ j)) denote the random variable which counts the number of
common neighbors between i and j when it is known that i ∼ j (i is linked to j). Similarly, let
Z6∼ := (CN | (i 6∼ j)) be a random variable counting common neighbors when i 6∼ j. Using this
notation and a result from Fawcett et al. [30], we have that the AUC score can be computed using:

AUC = P (Z∼ > Z6∼ | (Z∼ 6= Z6∼)). (3.8)

Now, in the case of Figure 3.5a, which is essentially a graph with no higher-order relations, we
have,

Z∼ = Z6∼ =

1 w. p. φ2
2,

0 w. p. 1− φ2
2

(3.9)

So, it is easy to see that we have an AUC of 0.5 as can be computed from eq. (3.8). In other words,
the CN heuristic estimates that it cannot predict well whether node a would be linked to node b. This
prediction matches with the ground-truth, since in the first place, the link between node a and node b is
randomly present with probability φ2 > 0. Now, consider the scenario when a higher-order relation is
present in the network as shown in Figure 3.5b. In this case, the link between nodes a and b appears
randomly with probability φ3, and hence, any heuristic should not be able to predict the link with an
AUC score of more than 0.5. However, in this case observe that:

Z∼ =

1 w. p. 1,

0 w. p. 0
and Z6∼ =

1 w. p. 0,

0 w. p. 1.
(3.10)

And from eq. (3.8), we have that AUC score is 1. In other words, the CN heuristic estimates it can
predict perfectly whether the link between nodes a and b exists or not. But, it is known that this is
not possible since the existence of a link between nodes a and b is, by construction, random with
probability φ3 > 0. Hence, this justifies the empirical observation that LP heuristics CN and AA
overestimate their ability to predict links in presence of higher-order relations (hyperedges).

We state and prove a similar argument for a more generic hypergraph in Theorem 3.1, making our
case even stronger.

Theorem 3.1. Let (U, r, φ) denote the hypergraph model, where φ2 = 0 and φi > 0 for all i > 3. Then

the AUC score of CN is strictly greater than 0.5.

Note that since any link i ∼ j can occur only with probability φ|F | where F ⊃ {i, j}, the best
possible score can only be 0.5.
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Proof. Let {i, j} denote arbitrary but fixed pair of points such that there exists a unique hyperedge
F ⊃ {i, j}. We prove that in this case,

P (Zi∼j > Zi 6∼j | Zi∼j 6= Zi 6∼j) > 0.5 (3.11)

The proof for the generic case is similar.
Claim 1 : We first show that,

P (Zi∼j = 0) < P (Zi 6∼j = 0) (3.12)

and for all k ≥ 1,
P (Zi∼j > k) > P (Zi 6∼j > k) (3.13)

Recall that F denotes the set of all possible hyperedges. Now, let E denote an event that essentially
selects a subset of F based on some constraints. Let Ei 6∼j denote the event where i 6∼ j. Then, one
can construct the event Ei∼j by ensuring that one picks a hyperedge F ∈ F. So, if P (Ei 6∼j) = p, then,
P (Ei∼j) = p · φ|F |/(1− φ|F |). Now,

P (Ei 6∼j | i 6∼ j) =
P (Ei 6∼j)

P (i 6∼ j)
=

p

1− φ|F |
=

p · φ|F |
φ|F | · (1− φ|F |)

=
P (Ei∼j)

P (i ∼ j)

= P (Ei∼j | i ∼ j)

(3.14)

Moreover, we have that CN(Ei∼j) (common neighbor count of {i, j} when i ∼ j) is greater than or
equal to CN(Ei 6∼j). Now, consider P (Zi∼j = 0). Since, if i ∼ j, then F is selected and |F | > 2, we
must have that P (Zi∼j = 0) = 0 that is there exists at least one common neighbor for {i, j} when
i ∼ j. Clearly, it is possible that Zi 6∼j = 0 and hence

P (Zi∼j = 0) < P (Zi 6∼j = 0) (3.15)

Now, consider the case when k ≥ 1,

P (Zi 6∼j > k) =
∑
Ei6∼j

I{CN(Ei 6∼j) > k}P (Ei 6∼j | i 6∼ j) (3.16)

<
∑
Ei∼j

I{CN(Ei∼j) > k}P (Ei∼j | i ∼ j) (3.17)

= P (Zi∼j > k) (3.18)
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Since, as shown earlier, for each Ei 6∼j , one can construct a corresponding Ei∼j such that CN(Ei∼j) is
greater than or equal to CN(Ei 6∼j). The strong inequality holds since one can construct atleast one
case such that CN(Ei∼j) is strictly greater than CN(Ei 6∼j).

Now, let pk = P (Zi∼j = k) and p′k = P (Zi 6∼j = k)

AUC = P (Zi∼j > Zi 6∼j | Zi∼j 6= Zi 6∼j) (3.19)

=
∑
k

P (Zi∼j > Zi 6∼j)

P (Zi∼j 6= Zi 6∼j)
(3.20)

=
∑
k

P (Zi∼j > k,Zi 6∼j = k)∑
k′ P (Zi∼j 6= k′, Zi 6∼j = k′)

(3.21)

=
∑
k

P (Zi∼j > k)P (Zi 6∼j = k)∑
k′ P (Zi∼j 6= k′)P (Zi 6∼j = k′)

(3.22)

>
∑
k

P (Zi 6∼j > k)P (Zi 6∼j = k)∑
k′ P (Zi∼j 6= k′)P (Zi 6∼j = k′)

(3.23)

=
∑
k

P (Zi 6∼j < k)P (Zi 6∼j = k)∑
k′ P (Zi∼j 6= k′)P (Zi 6∼j = k′)

(3.24)

(3.25)

Now, for every event Ei∼j one can construct an event Ei 6∼j by simply removing F . Moreover, if
CN(Ei∼j) < k then, it implies that CN(Ei 6∼j) < k. Hence, P (Zi 6∼j < k) > P (Zi∼j < k). So, we
have

AUC >
∑
k

P (Zi 6∼j < k)P (Zi 6∼j = k)∑
k′ P (Zi∼j 6= k′)P (Zi 6∼j = k′)

(3.26)

>
∑
k

P (Zi∼j < k)P (Zi 6∼j = k)∑
k′ P (Zi∼j 6= k′)P (Zi 6∼j = k′)

(3.27)

= P (Zi∼j < Zi 6∼j | Zi∼j 6= Zi 6∼j) (3.28)

Hence we have that,

AUC = P (Zi∼j > Zi 6∼j | Zi∼j 6= Zi 6∼j) > 0.5 (3.29)

as,
P (Zi∼j > Zi 6∼j | Zi∼j 6= Zi 6∼j) + P (Zi∼j < Zi 6∼j | Zi∼j 6= Zi 6∼j) = 1 (3.30)
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3.4 Better Evaluation of Link Prediction Methods
In the previous section, we have proved that higher-order relations skew scores provided by LP
heuristics. More particularly, we saw that they tend to overestimate their capability of generalization.
In this section, we provide a method to better estimate this generalization-ability.

Theorem 3.2. On an Erdos-Renyi graph, the best AUC a link prediction method can achieve is of 0.5.

Proof. Given n ∈ N and p ∈ R, we have V = {1, 2, . . . , n} and P (i ∼ j) = p. Suppose there is a
link predictor π : P2(V ) → R. If Z∼ := (π({i, j}) | i ∼ j) and Z� := (π({i, j}) | i � j), we have
AUC = P (Z∼ > Z� | Z∼ 6= Z�). Now, whatever be the logic the value of π depends upon, it would
not differentiate between links and non-links since the “environment” for link prediction was formed
at random. In other words, π({i, j}) would follow the same distribution for both links and non-links,
giving us P (Z∼ = k) = P (Z� = k) ∀k (assuming them to be discrete random variables; a similar
argument holds for a continuous one as well). So, we have P (Z∼ > Z� | Z∼ 6= Z�) = P (X > Y |
X 6= Y ) = 0.5 (where X and Y are two random variables from the same distribution).

The main idea relies on the foregoing premise: “On a random version of a given graph, the best

AUC a link prediction method can achieve is of 0.5”. It can be seen from the following Thus, given
a hypergraph H, one can construct a randomized version Hrand of H, and expect the link prediction
AUC on its clique-expanded graph η(Hrand) to be around 0.5. Now, as noted in the previous section,
we know that a typical LP algorithm gives a higher-than-expected AUC score on any graph expanded
from a hypergraph. Thus, we compute an adjustment factor AF , which we define as the ratio of AUC
score AUC(Hrand)

1 obtained on the randomized hypergraph and the ideally expected score viz., 0.5

on it. Finally, this adjustment factor is used to compute an adjusted AUC score AUCadj(H) on the
original hypergraph H.

To achieve this, we first make multiple runs of a hyperedge relocation algorithm (Algorithm 1)
on a given hypergraph H to obtain multiple relocated versions Hrel of the same. Basically, for each
hyperedge in the original hypergraph H, we add a same-sized random hyperedge to Hrel. This
ensures that the core statistics of the network remains the same. However, since the hyperedges are
added randomly, any LP algorithm should only have achieved a score of 0.5. The adjustment factor

and accordingly, an adjusted AUC score can then be computed using relocated AUC AUCrel :=

AUC(Hrel) as:

AF (H) =
AUCrel

0.5
AUCadj(H) =

AUC(H)

AF (H)
(3.31)

1For a hypergraph H, AUC(H) denotes the AUC score obtained on its clique-expanded graph η(H).
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Algorithm 1: Generates randomized version of a hypergraph H, Hrel. This is referred to
as the relocation algorithm. Every hyperedge in H is relocated to a randomly selected new
one, thereby constructing a relocated hypergraph Hrel. Multiple runs of this algorithm on the
same network is used to estimate baselines for an LP algorithm.

Input: Original hypergraph, H = (V,F)
LP algorithm, X

Output: Hrel

1 Frel ← {}
2 for F ∈ F do
3 Frel ← RANDOMSUBSET(V, |F |)
4 Frel ← Frel ∪ {Frel}
5 Hrel ← (V,Frel)
6 return Hrel

3.5 Results and Discussion
Table 3.1 shows the AUC scores obtained on an original hypergraph H and its relocated versions
Hrel, the adjustment factors AF , and the adjusted-AUC scores AUCadj for real-world datasets taken
from Benson et al. [11]. We perform five relocations, and hence report the mean and standard-
deviation values for AUCrel. Although there are varieties of algorithms available in the litera-
ture: neighborhood-based [127], path-based [72], eigenvector-based [41], evolutionary [15], matrix-
factorization-based [74], matrix-completion-based [83], entropy-based [80], deep-learning-based [130],
etc., in this chapter we focus on the neighborhood- and path-based ones. Evolutionary algorithms too
have shown to be promising in the recent past in various problems involving networks, including link
prediction [124] and community detection [90, 104]. Following are the LP algorithms we use in this
chapter: Preferential Attachment (PA) [78, 50], Adamic Adar (AA) [2], Common Neighbors (CN) [78],
Jaccard Coefficient (JC) [66], Resource Allocation (RA) [136], and SimRank (SR) [49].

The following key observations can be made from Table 3.1:

• For NDC-substances, wherein we predict drug interactions, the effect of higher-order relations
is the highest. Without adjustment, all heuristics estimate that they would be able to predict
around 96–99% of links. However, the randomized (relocated) hypergraph also gives a really
high score (except for PA and SR). In reality, for most heuristics, the score is only around 50–55%

as obtained after adjustment (again, PA is an exception).

• Interestingly the adjustment factors are proportional to number of hyperedges of higher orders.
That is, higher the number of higher order relations, larger the adjustment factor. For instance,
it is clear from Figure 3.3a that dataset contact-primary-school has the least number of
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Table 3.1: Popular neighborhood-based link prediction (LP) algorithms’ AUC scores (%) for five
real-world hypergraphs (H) and their relocated versions (Hrel), providing new baselines (i.e., relocated
AUCs AUCrel) and corrected performance scores (adjusted AUCs, AUCadj) for them. Observe that
the newer baselines are different across different datasets per method. Using the mean relocated AUC
scores, we compute adjustment factors AF and ultimately report an adjusted AUC score AUCadj as per
eq. (3.31). Apart from this, we have results (t and p) of a t-test at 5 + 5− 2 = 8 degrees of freedom for
the null hypothesis “Relocated hypergraphs exhibit random behavior (i.e., relocated AUCs = 50%)”,
wherein it could be observed that p� 1% in most cases (except for in contact-primary-school
where p is not so small). Also shown are number of nodes |V | and hyperedges |F|, whose size distri-
butions are depicted in Figure 3.3. All datasets have been taken from Benson et al. [11]. Adjustment
factors that are lowest for a single dataset are bold-faced. In addition, four algorithm-pairs have been
marked using superscripts a, b, c, and d; these show performance-reversals w.r.t. AUC and AUCrel.

LP Orig. AUC Relocated AUC Adj. AUC
Dataset H = (V,F) algorithm AUC AUCrel t p AF AUCadj

email-Enron

|V | = 148

|F| = 1,436

PA 82.46 67.6000± 0.3123 112.7 10−13 1.35 61.08
AA 94.22 69.2780± 0.3741 103.1 10−13 1.39 67.78
CN 93.12 69.1860± 0.3855 99.5 10−13 1.38 67.48
JC 95.36 69.5460± 0.4242 92.2 10−13 1.39 68.60
RA 96.41 69.4460± 0.3569 109.0 10−13 1.39 69.36
SR 88.82 68.2940± 0.2667 137.2 10−14 1.37 64.83

contact-high-school

|V | = 327

|F| = 7,818

PA 67.05 56.7160± 0.1669 80.5 10−12 1.13 59.34
AA 93.69 54.8560± 0.1876 51.8 10−11 1.10 85.17
CN 93.55 54.8240± 0.1940 49.7 10−11 1.10 85.05
JC 93.20 53.1520± 0.2081 30.3 10−9 1.06 87.92
RA 93.81 54.8580± 0.1955 49.7 10−11 1.10 85.28
SR 92.50 56.7240± 0.1166 115.3 10−13 1.13 81.86

contact-primary-school

|V | = 242

|F| = 12,704

PA 72.20 56.1760± 0.2117 58.3 10−11 1.12 64.46
AA 86.95 52.3760± 0.1852 25.7 10−8 1.05 82.81
CN 86.27 52.3560± 0.1929 24.4 10−8 1.05 82.16
JC 88.94 49.3960± 0.1983 6.1 10−4 0.99 89.84
RA 88.73 52.3860± 0.1822 26.2 10−8 1.05 84.50
SR 86.28 55.0620± 0.2876 35.2 10−9 1.10 78.44

NDC-substances

|V | = 5,556

|F| = 4,525

PAa 96.86 66.8960± 0.1153 293.1 10−17 1.34 72.28
AAa 99.13 96.4960± 0.0806 1153.7 10−21 1.93 51.36
CN 98.95 96.1080± 0.0966 954.6 10−21 1.92 51.54
JC 98.67 98.4800± 0.0245 3957.6 10−26 1.97 50.09
RAb 99.57 97.7540± 0.0206 4636.3 10−26 1.96 50.80
SRb 98.88 88.9620± 0.0479 1626.8 10−23 1.78 55.55

tags-math-sx

|V | = 1,554

|F| = 22,274

PAc 90.48 56.0940± 0.0585 208.3 10−16 1.12 80.79
AAc 94.88 64.8120± 0.0611 484.8 10−18 1.30 72.98
CN 94.31 64.6880± 0.0601 488.8 10−18 1.29 73.11
JC 89.43 65.2260± 0.0700 435.0 10−18 1.30 68.79
RAd 96.04 64.8480± 0.0631 470.6 10−18 1.30 73.88
SRd 94.78 60.0960± 0.0422 478.5 10−18 1.20 78.98
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higher-sized hyperedges, and also the least of the adjustment factors (1–1.12). On the other hand,
dataset NDC-substances has a higher number of higher-sized hyperedges, and hence the largest
of adjustment factors (1.34–1.97).

• To better understand the need for an adjustment factor and an adjusted AUC for a hypergraph,
we consider two link prediction algorithms LPA1 and LPA2. Now, any comparison of these
algorithms assumes similar AUC scores in case of randomly generated datasets;1 this can be
considered as a baseline for their comparison. This seems true for some algorithm pairs in
Table 3.1: e.g., AA and CN share similar AUCrel scores for each dataset. Contrast this with
the pairs marked using superscripts a, b, c, and d. For instance, consider the algorithm pairs
(PA, AA) and (RA, SR), which on both the randomly relocated hypergraphs NDC-substances
and tags-math-sx, do not perform equally, in that AA and RA decently outperform PA and
SR respectively. Hence, the baselines are quite different, and so algorithms PA and AA are not
comparable here. Same is the case for RA and SR.

• A remarkable observation is that the adjusted AUCs of the a-, b-, c-, and d-marked algorithm-
pairs in Table 3.1 show a performance-reversal, i.e., the AUC order reverses for algorithm-pairs
(PA, AA) and (RA, SR) when adjusted. More specifically, for both datasets NDC-substances and
tags-math-sx, we have AUC(AA) > AUC(PA), but AUCadj(AA) < AUCadj(PA) (similarly,
AUC(RA) > AUC(SR), but AUCadj(RA) < AUCadj(SR)), reversing the performance rating
of the algorithms. This is indeed the situation which occurs in presence of higher-order relations,
and hence correction is required for proper evaluation. As link prediction is a 2-class problem,
the appropriate baseline is indeed 0.5, and one should normalize the scores accordingly. This is
achieved by the adjustment factor.

3.6 Conclusion
We set out to study the effect hypergraphs have on their induced graphs – in particular, on link prediction
therein. Through a couple of experiments, some observations, and a few theoretical arguments, we
have successfully proved that higher-order relations skew link prediction in simple graphs. More
specifically, we prove this by proposing a simple model for hypergraphs, and using this model, we
show that link prediction algorithms such as Common Neighbors and Adamic Adar do not generalize

well in the presence of higher-order relations. Moreover, we also posit that these algorithms tend
to overestimate their ability to predict links. To correct the said overestimation, we propose a new

1Random in the sense that any useful prediction cannot be made for such datasets. Consider a simple classification
problem where both classes 0 and 1 come from the same distribution. In such cases, it is known that no classifier could be
successfully learnt.
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evaluation approach by computing an adjustment factor that amends the performance scores for link
prediction, namely, area under ROC curve (AUC).
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Chapter 4

Exploit before Expanding: Leveraging
Hypergraphs for Modeling Node Pairs

“It has been said: The whole is more than the sum of its parts. It is more correct to say that

the whole is something else than the sum of its parts, because summing up is a meaningless

procedure, whereas the whole-part relationship is meaningful.” ∼ Kurt Koffka

N
ODE-similarity in networks has motivated a plethora of such measures between node-pairs, which
make use of the underlying graph structure. We have already seen in the previous chapter

(Chapter 3) how hypergraphs affect the dynamics of link prediction heuristics, a paradigm catering
to pairs of nodes. Measuring proximity between node pairs in the presence of hyperedges calls for a
revision in the topological measures of similarity, lest the hypergraph structure remains under-exploited.
In this chapter, we propose a multitude of hypergraph-oriented similarity scores between node-pairs,
thereby providing novel link prediction heuristics as well, that exploit higher-order relations (or
hyperedges). As a part of our proposition, we also provide theoretical formulations to extend graph-
topology based scores to hypergraphs. We compare our scores with popular graph-based heuristic
similarity scores (over clique-expansions of hypergraphs into graphs). Using a combination of the
existing graph-based and the proposed hypergraph-based similarity scores as features for a classifier
predicts links much better than using the former solely. Experiments on several real-world datasets and
both quantitative as well as qualitative analyses on the same exhibit the superiority of the proposed
similarity scores over the existing ones.

4.1 Introduction
Measuring similarity between nodes of a graph has attracted the attention of network science researchers
in all domains, be it social [37], biological [9], bibliographic [102], or entertainment [61]. One simple
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(a) Hypergraph (b) Derived network

Figure 4.1: A toy example showing the genesis of a co-authorship network from its originally occurring
hypergraph (i.e., its higher-order counterpart).

reason why similarity between two nodes is important is to make a decision as to whether two
seemingly unconnected nodes should be connected or not – a problem more popularly known as
recommendation [32]. While the notion of similarity between two nodes is fairly intuitive when the
underlying relational structure of the network is graph-like (i.e., edges connect two nodes), it is a
different game altogether when it is not. More specifically, if the underlying relational structure of
a network involves higher-order relations, it is quite unclear how close or similar two nodes would
be in the presence of such higher sized “edges” (i.e., hyperedges). To make these two points clearer,
let us divert our attention to Figure 4.1(a). We see five authors A–E who are related to each other
by co-authorship, which by nature possesses a higher-order property in that more than two authors
can write a publication together. In this case, we see three co-authorship groups: ABC, BCDE, and
DE, each corresponding to a collaboration between the respective authors. Some illustrative pieces of
information that the graph on the right loses are: (1) How many papers were written to start with? (2)
Who all collaborated with each other? (3) Which author has the tendency to collaborate with larger
teams?

Moreover, on one hand, we see that it makes sense about how close or far away two nodes are
to each other in a graph (say, authors A and E in Figure 4.1(b)) in terms of shortest-path or a node
similarity mechanism based on the graph-structure. But on the other hand, while similarity between
the authors could be calculated for the hypergraph on the left (Figure 4.1(b)) as well, it ought be done
using the incident hyperedges lest we miss the subtle differences between nodes A and E, and their
respective environments. For one, even though we know that A and E have two and three neighbors
respectively, we don’t know their “tendency” to collaborate with 3-author and 4-author groups. It
is clear that there is a misrepresentation that reduces our ability to find the similarity between two
nodes in such an scenario. As would be shown later, standard measures of node similarity do not
transfer directly from the graph-domain to hypergraphs. While most of the literature on computing
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node-similarity is focused on graphs, we deal with the same problem in the presence of hypergraphs1.
Moreover we know that any given hypergraph could be converted into a graph (although lossily) by
simple heuristics, weighted/unweighted clique-expansion (ref. Chapter 2) being one of them.

It is well-known that local similarity measures (e.g., common neighbors [78]) prove to be powerful
link predictors, either by themselves [66], or as classifier features [4]. However, while computing
their values for a network, we usually ignore the underlying hypergraph structure, owing to the
dyadic relation assumption (see Chapter 1, Section 1.1.1). This deprives the similarity measure
of any extra information such higher-order structure could have otherwise contributed towards. In
the present chapter, we exploit the underlying hypergraph structure of a given network and extend
popular local (i.e., neighborhood-based) node similarity measures to their higher-order variants. In
essence, we leverage the topological properties of the underlying hypergraph of a derived network
to aid the process of measuring the similarity between two nodes. We restrict our interest to local
neighborhood based similarity measures and argue about the performance of their higher-order variants
by explicitly predicting links using them. Our experiments include both temporal as well as non-
temporal hypergraphs (see Chapter 2 for formal definitions).

We first provide a generic formulation to convert any neighborhood based pairwise similarity score
to hypergraphs in Section 4.2. Then in Section 4.3, we describe procedures to carefully prepare data and
hypergraph-oriented features so as to carry out experiments. In Section 4.5, we perform experiments,
that include both temporal as well as non-temporal datasets. We also compute mutual information
scores to vouch for the relevance of our measures, and devise different feature combinations to test
them in a supervised learning scenario. And finally, in Section 4.6, we compare our AUC scores with
that of the baselines.

4.1.1 Key Contributions
1. We formulate a theoretically-backed novel technique to convert graph topology-based pairwise

node similarity measures into hypergraph-topology-based ones.

2. We extend the local neighborhood based node similarity scores to their hypergraph variants.

3. We propose fair and unbiased novel data preparation algorithms, so that similarity computa-
tion could be performed on both temporal and non-temporal hypergraph networks.

4. We improve the quality of structural similarity between nodes by incorporating hypergraphs
and the scores we formulate.

1Please note that by “node similarity on hypergraphs”, we still refer to pairs of nodes (links/edges), not hyper-
links/hyperedges.
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4.2 Formulating Similarities
Social scientists have long been involved in finding metrics that describe relations between entities
in a network. It was Liben-Nowell, et al. [66] who first formally accumulated topological similarity
scores from the network science literature and showed that they are good measures by themselves.
These similarity functions range from the earliest works of Katz [54] and Adamic, et al. [2] to the then
recent works by Newman, et al. [76]; and till date, topological link prediction has undergone several
advancements [72]. Nevertheless, though there have been several works pertaining to hypergraphs
and their applications, no work in the literature (with exceptions to some works [64], which use
uniform/heterogeneous hypergraphs) utilizes higher-order relations for similarity computation.

In this section, we formally extend similarity scores in the literature from the graph- to the
hypergraph-domain. For the same, we define an end-to-end process of carefully constructing such
scores from existing graph-topology based ones. We first generalize graph-based local neighborhood
scores via defining set-similarity functions taken from well-known local link prediction heuristics, and
then extend them to graphs (which is a usual, adjacency-based topology) and finally to a hypergraph
(incidence-based) topology. Our ultimate goal is to be able to predict links between an unlinked pair
{u, v} of nodes given a hypergraph H = (V,F). In the literature, we find a plethora of techniques that
make use of the existing graph structure, given graph G = (V,E). Most such techniques are set-based,
in that they take some node subsets Su, Sv ⊆ V corresponding to the nodes u, v in consideration, and
assign a prediction score to the pair {u, v}. Hence, we focus on set-based similarity measures, which
we discuss next, taking “common neighbors” as a special case.

4.2.1 The Case of Common Neighbors
For a pair of nodes {u, v}, the Common Neighbors (CN) technique takes sets Su and Sv to be neighbors

of u and v respectively (i.e., Su := Γ(u) and Sv := Γ(v)), and computes the cardinality of their
intersection. In essence, CN makes use of two major concepts: “neighborhood”, and “intersection”.
Now, if one were to compute the hypergraph-equivalent to CN, one would have to use a concept
equivalent to “neighborhood”. A simple option would be to consider “hyperneighborhood” (ref.
Chapter 2) instead. In other words, the hypergraph equivalent of CN for u, v could be defined as the
number of hyperedges incident on both u and v; but since the nodes are unlinked in the first place, there
would be no common hyperedges! Thus, this option fails. This is because because while for graphs we
have CN being “the number of common neighbors”, for hypergaphs the same cannot be extended since
the concept of “neighbor” is ambiguous, in that while in graphs the number of neighboring edges and
neighboring nodes would be the same, in a hypergraph the same wouldn’t be true. So one needs to
define common neighbors explicitly for hypergraphs. Moreover, the CN criterion ought be defined
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for hypergraphs in such a way that it could be vacuously equated to the existing CN for graphs (since
every graph is a hypergraph). In other words, we still want to use the “common-neighbor” paradigm
on hypergraphs.

Hence, first consider pairs of hyperedges Fu, Fv ∈ F, such that one is incident to u (u ∈ Fu) and
the other to v (v ∈ Fv), and count their “intersection” |Fu ∩ Fv|. And since Fu and Fv are precisely
the hyperneighbors (Γ̃) of u and v, we have combined the two concepts of “hyperneighborhood” and
“intersection”, and thus, have extended CN to hypergraphs. But since each choice of Fu, Fv would give
a number |Fu ∩Fv|, we would have an |Γ̃(u)| × |Γ̃(v)| matrix of intersection-counts. A suitable matrix

norm could then be used to convert this matrix into a single numerical quantity, which we would use as
a feature for similarity computation.

Extending this formalization to all local-neighborhood [41] based similarity computation scores is
the ultimate goal of this section. In order to do that, we define the notions of a set similarity function

ϕ, a node similarity function ω, and a node-similarity matrix-function ψ. For ease of transference of
any set-similarity notion to node pairs, we also define two functionals (functions that map functions
to functions): an adjacency functional α (to use set-similarity functions as similarity computers in
graphs) and an incidence functional ‖ξ‖ (to use them as similarity computers in hypergraphs). An
intermediate concept: incidence matrix-functional ξ has to be defined, so that it could be composed
with a matrix norm to obtain incidence-based node-similarity measures.

4.2.2 Extending Similarities to Hypergraphs
Given a hypergraph H = (V,F), for each vertex pair {u, v} ∈ P2(V ), we define functions that quantify
the proximity between vertices u and v.

Definition 4.1 (Set Similarity Function). A set similarity function:

ϕ : P2(P(V ))→ R, {U,U ′} 7→ ϕ({U,U ′}) (4.1)

is a function that assigns to an unordered pair of vertex sets, U,U ′ ⊆ V , a real number ϕ({U,U ′})
corresponding to a measure of similarity between the sets. Let Φ := RP2(P(V )) represent all set-

similarity functions over V .

Definition 4.2 (Node Similarity Function). A node similarity function is defined as a function:

ω : P2(V )→ R, {u, v} 7→ ω({u, v}) (4.2)

that assigns to a pair of nodes u, v ∈ V , a similarity score ω({u, v}) ∈ R. Let Ω := RP2(V ) denote the

set of all node-similarity functions over V .
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Table 4.1: Set Similarity Functions for a graph G = (V,E). Here, U,U ′ ⊆ V and Γ(u) represents the
neighbors of a node u ∈ V . Refer to Chapter 2 for definitions of these functions.

Common Neighbor, ϕCN |U ∩ U ′|
Jaccard Coefficient, ϕJC (|U ∩ U ′|)/(|U ∪ U ′|)
Association Strength, ϕAS (|U ∩ U ′|)/(|U | · |U ′|)
Cosine Similarity, ϕCS (|U ∩ U ′|)/(

√
|U | · |U ′|)

NMeasure, ϕNM (|U ∩ U ′|)/(
√
|U |2 + |U ′|2)

MinOverlap, ϕMnO (|U ∩ U ′|)/(min{|U |, |U ′|})
MaxOverlap, ϕMxO (|U ∩ U ′|)/(max{|U |, |U ′|})

Adamic Adar, ϕAA
∑

u∈U∩U ′

1

log(|Γ(u)|)

Pearson Correlation, ϕPC
|V | · |U ∩ U ′| − |U | · |U ′|√

(|V | · |U | − |U |2) (|V | · |U ′| − |U ′|2)

Preferential Attachment, ϕPA |U | · |U ′|

At this point, we also define an adjacency functional:

Definition 4.3 (Adjacency Functional). An adjacency functional is a function

α : Φ→ Ω, ϕ 7→ α(ϕ) ∈ Ω, α(ϕ)({u, v}) := ϕ({Γ(u),Γ(v)}), (4.3)

that maps each set-similarity function ϕ ∈ Φ to a node-similarity function ω = α(ϕ) ∈ Ω defined as

α(ϕ)({u, v}) := ϕ({Γ(u),Γ(v)}).

In order to extend this successfully to hypergraphs, we define a node-similarity matrix-function:

Definition 4.4 (Node-similarity Matrix-function).

ψ : P2(V )→MR, {u, v} 7→ ψ({u, v}) (4.4)

is defined as a node-similarity matrix-function that assigns to a pair of nodes u, v ∈ V , multiple

similarity scores arranged in a real matrix ψ({u, v}) ∈MR, where MR :=
⋃
m,n∈NRm×n denotes the

set of all real-valued finite-dimensional matrices. Let the set of all such functions for V be denoted by

Ψ := M
P2(V )
R .

Then for a hypergraph, we define an incidence matrix-functional:
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Definition 4.5 (Incidence Matrix-functional).

ξ : Φ→ Ψ, ϕ 7→ ξ(ϕ) ∈ Ψ (4.5)

that maps each set-similarity function ϕ ∈ Φ to a node-similarity matrix-function ψ = ξ(ϕ) ∈ Ψ

defined as:

ξ(ϕ)({u, v}) :=


ϕ(F1, F

′
1) · · · ϕ(F1, F

′
n)

... . . . ...

ϕ(Fm, F
′
1) · · · ϕ(Fm, F

′
n)

 ∈ Rm×n, (4.6)

where Γ̃(u) =: {F1, F2, . . . , Fm} and Γ̃(v) =: {F ′1, F ′2, . . . , F ′m} are hyperneighbors of u and v

respectively.

As discussed earlier, multiple matrix norms could be used to convert this matrix to a real number.
Some of them are:

1. Max-norm: ‖X‖max := maxi,j{|Xij|}

2. Avg-norm: ‖X‖avg := 1
m·n
∑

i,j |Xij|

3. L1-norm: ‖X‖1 :=
∑

i,j |Xij|

4. L2-norm: ‖X‖2 :=
√∑

i,j |Xij|2.

Finally, the composition of a matrix norm with the incidence matrix-functional forms an incidence
functional.

Definition 4.6 (Incidence Functional). The incidence functional

‖ξ‖ : Φ→ Ω, ϕ 7→ ‖ξ(ϕ)‖, ‖ξ(ϕ)‖({u, v}) := ‖ξ(ϕ)({u, v})‖, (4.7)

is defined as ϕ 7→ ‖ξ‖(ϕ) := ‖ξ(ϕ)‖ ∈ Ω, mapping pairs {u, v} ∈ P2(V ) to incidence-based

similarities ‖ξ(ϕ)({u, v})‖ ∈ R.

Of the functionals defined above, the adjacency and the incidence functionals make use of neighbors

and hyperneighbors respectively to transfer set-similarity functions to node-similarity in graphs and
hypergraphs respectively.
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4.2.2.1 Illustration with Common Neighbors

For the sake of further clarity, we demonstrate the case for Common Neighbors. We first pick ϕCN ∈ Φ

(as defined in Table 4.1) as the set similarity function. The adjacency functional α maps ϕCN to a
node similarity function ωCN := α(ϕCN) : P2(V ) → R, defined by {u, v} 7→ ϕCN(Γ(u),Γ(v)) :=

|Γ(u) ∩ Γ(v)|, the usual common-neighbor criterion for similarity computation in graphs. Moving
to the incidence (hypergraph) domain, we first use the incidence matrix-functional ξ to map ϕCN to
a node-similarity matrix-function ψCN := ξ(ϕCN) : P2(V ) → MR. If Γ̃(u) = {F1, . . . , Fm} and
Γ̃(v) = {F ′1, . . . , F ′n}, then ξ(ϕCN)({u, v}) is a matrix whose (i, j)th entry would be ϕCN(Fi, F

′
j). If

a matrix norm such as ‖ · ‖max is used, we get the incidence functional, ‖ξ‖max, that gives us the node
similarity function ωHCNM({u, v}) (where HCNM stands for hypergraph-common-neighbor-max)
as

‖ξ‖max(ϕCN)({u, v}) = max
(F,F ′)∈Γ̃(u)×Γ̃(v)

{|ϕCN({F, F ′})|},

where ϕCN(F, F ′) = |F ∩ F ′|.

4.2.3 Sanity Check for Hypergraph-based Similarities
For the sake of establishing the sanity of the recently developed mechanism, we have the following
lemma.

Lemma 4.1. The Common-Neighbor set similarity function ϕCN , when used to define an incidence-

based node similarity function ‖ξ(ϕ)‖, for a graph G = (V,E), assigns to each pair {u, v} ∈ P2(V ),

a similarity score that is proportional to a constant power of the original score. That is,

‖ξ(ϕ)‖({u, v}) = λ · (α(ϕ)({u, v}))β , (4.8)

for at least one matrix norm ‖ · ‖, and for some scalars λ, β > 0.

Proof. Suppose we have G = (V,E) as a usual undirected graph. For nodes u, v ∈ V s.t. u 6= v, if
Γ(u) := {x1, x2, . . . , xm} and Γ(v) := {y1, y2, . . . , yn}, we get hyperneighbors

Γ̃(u) ={{u, x} | x ∈ Γ(u)} (4.9)

={{u, x1}, {u, x2}, . . . , {u, xm}}. (4.10)

Similarly,
Γ̃(v) = {{v, y1}, {v, y2}, . . . , {v, yn}}. (4.11)
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Now, if we take the matrix norm to be L1 (‖ · ‖), we have:

‖ξ(ϕCN)({u, v})‖1 =

∥∥∥∥(ϕCN({{u, xi}, {v, yj}}))1≤i≤m
1≤j≤n

∥∥∥∥
1

=

∥∥∥∥(|{u, xi} ∩ {v, yj}|)1≤i≤m
1≤j≤n

∥∥∥∥
1

=
∑

1≤i≤m
1≤j≤n

1(xi = yj) = |Γ(u) ∩ Γ(v)|

= ϕCN({Γ(u),Γ(v)}) = α(ϕCN)({u, v}) (4.12)

Taking different matrix norms, we get scores as shown in the table below (Table 4.2).

Table 4.2: Similarity scores between u and v (ϕCN ) when hypergraph is actually a graph.

Norm ‖ξ(ϕCN)({u, v})‖
‖ · ‖max 1(ϕCN({Γ(u),Γ(v)}) > 0)
‖ · ‖avg D 1

|Γ(u)|·|Γ(v)| · ϕCN({Γ(u),Γ(v)})
‖ · ‖1 ϕCN({Γ(u),Γ(v)})
‖ · ‖2

√
ϕCN({Γ(u),Γ(v)})

It could be observed that when ‖ · ‖1 is used as matrix norm, ϕCN becomes the same for both
hypergraphs and graphs (i.e., λ = β = 1). Scores from the other norms act as extra features that we
get as a result of the “incidence matrix” interpretation of a graph. The same procedure when repeated
for ϕAA, ϕJC , and other similarity scores gives us either the same graph score, or a scalar multiple of a
power of it.

Note: It needs to be understood that complete equality is not required, since ultimately, we use
graph features along with hypergraph ones (macro/micro combinations for GH, WH, etc.). Also, the
hypergraph based scores act as new features that come from the incidence matrix interpretation of the
hypergraph (even if it is a graph).

4.3 Methodology

4.3.1 Data Preparation and Preprocessing
Given a hypergraph (temporal or non-temporal), we need to convert it into a form that is consumable
in the similarity computation setting, so that we are able to calculate both graph- and hypergraph-based
features readily. We prepare data separately for temporal and structural similarity computation settings.
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Algorithm 2: STRUCTURALSPLIT(H, r) for hypergraph data
Input : Hypergraph H = (V,F)

Split ratio r ∈ [0, 1]
Output : Train hyperedges Ftr

Test links Ete
1 E← {}
2 for F ∈ F do
3 for e ∈ P2(F ) do
4 if e /∈ E then
5 E← E ∪ {e}

6 Ete ← SAMPLE(E, d(1− r) · |E|e)
7 Ftr ← CLEANHYPEREDGES(F, Ete)
8 return Ftr, Ete

4.3.1.1 Temporal Processing

In the temporal setting, we have a timed hypergraph, H = (V,F, TH) with us. Unweighted and
weighted clique expansions of H give G = (V,E, TG) and Gw = (V,E, TG, w) respectively. In short,
we have timed graphs G and Gw with us now. Now, as described in Chapter 2, we prepare datasets
Dunsup and Dsup ready for link prediction. The typical running time of a temporal preprocesser would
be O(|F| · 2smax), where F is the set of all hyperedges and smax := maxF∈F |F |.
4.3.1.2 Structural Processing

Structural processing is easier than temporal, since hyperedges are non-timed. Formally, we start with
a hypergraph H = (V,F), which gets converted into graphs G = (V,E) and Gw = (V,E, w) as before.
A similar split-ratio ρ ∈ [0, 1] is selected, and if m := |E|, we randomly delete mte := dρ ·me number
of edges from the graph, which has to be predicted later. In other words, a random sample Ete ⊆ E is
selected such that |Ete| = mte. As a result, we get the set of test edges Ete.

We now discuss the preparation of the train hypergraph, whose topology would be used while
predicting links. In the temporal case, we simply ignored hyperedges Fte from the test period and
what remained was Ftr. But here, we have no temporal information, and the train-test split is done at
random, which successfully separates Etr from Ete, but not Ftr from Fte, since there are no well-defined
concepts of “train period” or “test period” here.

Let us analyze the situation closely. Before continuing further, let us extend the hyperneighborhood
function to edges: Γ̃ : E→ P(F) defined as e 7→ Γ̃(e) := {F ∈ F | e ⊆ F}. The question is: which
hyperedges should be included in the train set so that information from them could be used while
predicting test links Ete?
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Algorithm 3: CLEANHYPEREDGES(F, E) to remove edge-information in E from hyperedges
F

Input : Set of hyperedges F
Set of edges E

Output : Cleaned-up hyperedges F−E
1 EF : E→ 2F

2 F−E ← F

3 for {u, v} ∈ E do
4 EF[{u, v}]← {F ∈ F | u, v ∈ F}
5 for {u, v} ∈ E do
6 for F ∈ EF[{u, v}] do
7 F−u ← F \ {u}
8 F−v ← F \ {v}
9 F−E ← (F−E \{F}) ∪ {F−u, F−v}

10 EF[{u, v}]← EF[{u, v}] \ {F}
11 for w ∈ F \ {u, v} do
12 if {u,w} ∈ E then
13 EF [{u,w}]← (EF[{u,w}] \ {F}) ∪ {F−v}
14 if {v, w} ∈ E then
15 EF[{v, w}]← (EF[{v, w}] \ {F}) ∪ {F−u}

16 return F−E

Choosing all hyperedges F as Ftr would trivialize the very task of similarity computation and
we would end up predicting all links with a 100% accuracy using only one feature: “common
hyperneighbors”! And, on the other hand, using only those hyperedges that are not supersets of any
test edge, i.e., Ftr = {F ∈ F | F 6⊇ e ∀e ∈ Ete} would deprive us of many links that a “hyperedge
minus a test edge” would have otherwise provided. We go with neither of the options and choose to
“strip” each test edge off of a potential train hyperedge. A detailed procedure has been described in
Algorithm 2, which in turn uses Algorithm 3 to clean away information about any test edge from the
hyperedges, finally giving us a rich train hypergraph for similarity computation.

Finally, we get train hypergraph Htr := (V,Ftr), and test edges Ete. The similarity computation
problem would be to predict new links (i.e., those not already present in Etr) using information from
the hypergraph topology Htr; predictions will later be evaluated using test set Ete. The running time of
structural processing is much higher than that of temporal: O(|F| · 2smax + (1− r) · |F|2 · 2smax) =

O((1− r) · |F|2 · 2smax)
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4.3.2 Computing Graph Features
We had earlier listed certain set-similarity functions in Table 4.1. Let use take the corresponding link
predictors (let us call them base predictors) from the literature [66, 41] and hence get ten different
similarity computation scores for each pair of nodes in a given dataset. More specifically, we take
the adjacency node similarity function α(ϕi) where α and ϕ are used as per Section 4.2 (where base
predictor, i ∈ {AA, JC, AS, CS, NM, MnO, MxO, AA, PC, PA}) to find scores for each pair. We repeat
this exercise for the edge-weighted version of the graph (using weighted scoring functions defined
in [41]). Finally, for each hypergraph, corresponding to each base predictor, we have two different
graph-based topological scores per node pair, which we denote by G (for unweighted graph) and W (for
weighted graph) respectively.

4.3.3 Computing Hypergraph Features
Similar to Section 4.3.2, we also compute scores for the hypergraph-variations of the base-predictors.
This involves computing the node-similarity matrix-function ψ for each of the set similarity functions
mentioned in Table 4.1, followed by the application of the four matrix norms defined earlier to obtain a
single numeric score for each pair. In summary, we compute the incidence node similarity function via
‖ξ(ϕi)‖, where ϕ, ξ, and ‖ · ‖ are as defined earlier, and Table 4.1. For each hypergraph, corresponding
to each base predictor, we have four different hypergraph-based topological scores per node pair, which
we denote by Hm, Ha, H1, and H2 corresponding to the four matrix norms identified.

4.4 Related Work
Computing similarity scores has a vast literature, and covering it in whole is beyond the scope of the
present chapter. The reader is redirected to some excellent review works [113, 70, 72], which provide
an intelligible coverage of the similarity computation ecosystem. Although the concept wasn’t new to
network scientists, and there have been vintage works on predicting new relations in networks ([54]),
the first formal work on similarity computation via link prediction could be credited to Liben-Nowell,
et al. [66]. They brought together multiple similarity scores to solve the problem, scores both new
and existing [54, 2, 78]. Ever since, many interesting directions to solve the similarity computation
problem in networks were taken.

However, almost all works that use hypergraph networks (with the exception of Li et al. [64],
who deal with heterogeneous, uniform hypergraphs only) do not consider the underlying hypergraph
structure after the network gets expanded to a graph.
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4.5 Experiments

4.5.1 Datasets
We use a multitude of hypergraph datasets, mainly from Benson, et al. [11], from where we pick six
datasets.

4.5.2 Preprocessing Data and Computing Scores
We perform a lot of link-prediction experiments on a number of hypergraph datasets belonging to
multiple real-world domains. Since data preparation is both a crucial step as well as one of our main
contributions, it forms a major part in our methodology (Section 4.3.1) itself. We fix the split-ratio to
be r = 0.2, and choose to randomly generate p = 5 times as many negative samples (non-links) as
positive samples (links). For each hypergraph, we perform both temporal and structual link prediciton
(ignoring the time information for the latter). We get train hyperedges Ftr, test links Ete, and test
non-links Ête as defined above.

For each pair {u, v} ∈ Ete ∪ Ête, we compute the ten base predictor scores, as mentioned in
Section 4.3.2, taking Etr := η(Ftr) (both weighted and unweighted clique expansion as described in
Chapter 2, Section 3.6) as information for edges, hence preparing our baselines. Then, as explained in
Section 4.3.3, we compute hypergraph-topology based scores that we have proposed. Towards the end,
for each base predictor, we have a total of six different scores per node pair: graph (G), weighted-graph

(W), hypergraph-max (Hm), hypergraph-avg (Ha), hypergraph-L1 (H1), and hypergraph-L2 (H2). And
since there are a total of ten base predictors: AA, AS, CN, Cos, PA, JC, MxO, MnO, NM, and Prn, we
finally get 6× 10 = 60 different scores per node pair.

4.5.3 Calculating Mutual Information
Mutual information [91] has been shown to play a major role in similarity computation [103]. But
we use it here in the classical sense, in that for each dataset, we find the mutual information score for
each individual feature by binning its values via a log-binning (where consecutive bins are assigned on
the base-10 log scale) mechanism since they are continuous values, with all of them being power-law
distributed as opposed to normal. We monitor the MI scores for various number of bins and found that
beyond a sufficiently large number of bins, the relative rank of the similarity computation features does
not change. Hence, we fix the number of bins to be 2000.

4.5.4 Performing Link Prediction
Finally, we evaluate our similarity measures by performing link prediction in three different modes,
which have been described as follows:

48



4. EXPLOIT BEFORE EXPANDING: LEVERAGING HYPERGRAPHS FOR MODELING
NODE PAIRS

1. Standalone features: In this mode, we simply use the predictor scores (G, W, Hm, Ha, H1, H2)
calculated in Section 4.5.2 for similarity computation, i.e., predict links via the unsupervised
similarity computation paradigm similar to Liben-Nowell et al. [66]. At the end, we would have
a total of 60 standalone scores. Although we did not expect to do better than the baselines in this
mode, we still observe decent performances.

2. Micro-feature combination: Here, we take various feature combinations, treating each of the
ten base predictors separately. We have a total of five different feature combinations per base
predictor: mic-G, mic-W, mic-H, mic-GH, mic-WH, where the first two correspond to singleton
features G and W, and the last three to taking H individually, G and H together, and W and H
together respectively (ref. Sections 4.3.2 and 4.3.3). In all, we have 10× 5 = 50 micro feature
combinations for each dataset.

3. Macro-feature combination: This is similar to micro-feature combination, except all base
predictors are taken together for each combination. That is, we take all graph-based features
(mac-G), all weighted-graph-based features (mac-W), all hypergraph-based features (mac-H), and
their combinations mac-GH and mac-WH. We have totally 5 macro-feature combinations for each
dataset.

In case of micro and macro modes, we learn a classifier1 (using both XGBoost [20] as well as
Logistic Regression separately) to predict links (and get one classifier per feature combination), and in
the standalone mode, the scores themselves are used as predictions. For the classification, we randomly
split the prepared data Ete ∪ Ête further into train and test, this time for classification2. Once we have
the predictions by a feature combination, for evaluating performance, the predictions are compared
with the labels (link/non-link) and ROC curves [24] are derived, which are finally summarized using
Area Under ROC (AUC).

4.6 Results and Discussion
We perform the experiments listed in the previous section on all the six datasets, all base predictors. For
micro and macro modes, we get a total of 50 and 5 classifiers respectively (one per feature combination),
and the same number of AUC scores, and for the standalone mode, we have 60 different AUC scores.
We run these experiments for a total of five times, so as to monitor the variance across different runs,
since each experiment has at least one random step, viz., sampling of non-links.

1We use a couple of specific classifiers to illustrate the fact that one combination of features work better than another.
In practice, it is advisable to try out a number of different classifiers and choose the best performing one(s).

2Earlier, we had performed a train-test split in a temporal or a structural sense, which was a data preparation step. But
here, the usual, supervised-learning oriented split of the prepared data into train and test has been performed
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Figure 4.2: Mutual information scores denoting importance of six features (for all ten base predictors)
in classifying links vs. non-links, computed on the coauth-DBLP hypergraph.

4.6.1 Mutual Information for Link Prediction
Treating each standalone score as a feature in a supervised setting, we compute their mutual information
(MI) w.r.t. the positive (links) and negative (non-links) classes. For the dataset coauth-DBLP, we plot
MI scores for both temporal and structural similarity computation for each base predictor. As could
be observed, in the temporal case, except for AA, PA, and CN, where graph or weighted-graph MI
outperforms the others, at least two hypergraph MI scores are better than the graph ones. This only
means that hypergraph based scores have the potential to better explain links vs. non-links. We chose
this dataset since it is the largest hypergraph we have used.

4.6.2 Micro Feature Combination Performances
As per the description of the micro feature combination mode in Section 4.5.4, we report AUC scores
for the contact-high-school data in Table 4.3. It has to be interpreted as per various micro-feature
combinations. As is clear from the highlighted numbers, except for Cos, JC, and MxO in the temporal
similarity computation case (which perform best with mic-W), in all other cases, feature combinations
involving hypergraphs (mic-H, mic-GH, mic-WH) work best.

A similar trend could be seen from the rank-performance table of the micro mode (Table 4.4),
where at least one combination involving H ranks higher than the rest in each row. As compared with
the analysis in the standalone mode, where individual features were used, the micro mode gives better
scores; more so, when hypergraph features are involved.

4.6.3 Macro Feature Combination Performances
Finally, partitioning the features as per the macro mode in Section 4.5.4 gives us a total of five feature
combinations, all of whose performances have been listed in Table 4.5. The hypergraph based features
perform much better with these feature combinations. Even though mac-H underperforms the last two
columns, compared with the purely graph oriented feature combinations (mac-G and mac-W), except
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Table 4.3: AUC scores (%) for structural (-s) and temporal (-t) link prediction using micro-feature-
combination for contact-high-school (i.e., dataset B). Row ids AA–Prn represent base predictors.

mic-G mic-W mic-H mic-GH mic-WH

AA-s 93.0±0.7 92.8±0.8 93.3±0.6 93.4±0.5 93.4±0.6
AS-s 91.5±0.8 88.3±0.6 93.3±0.4 93.5±0.4 93.4±0.5
CN-s 93.0±0.7 92.6±0.9 92.9±0.3 93.2±0.4 93.2±0.4
Cos-s 92.9±0.8 93.0±0.6 93.1±0.3 93.2±0.4 93.5±0.5
PA-s 62.3±0.9 60.9±1.6 62.3±1.5 62.6±1.2 63.7±1.5
JC-s 92.8±0.5 92.8±0.4 93.1±0.3 93.3±0.2 93.3±0.3
MxO-s 92.6±0.4 92.5±0.4 93.2±0.4 93.3±0.4 93.3±0.3
MnO-s 92.6±0.9 91.5±0.6 93.0±0.2 93.3±0.7 93.1±0.3
NM-s 92.8±0.5 92.5±0.3 93.2±0.3 93.3±0.3 93.4±0.4
Prn-s 90.9±0.6 90.8±0.8 93.2±0.3 93.2±0.3 93.3±0.4

AA-t 86.3±2.4 86.7±2.4 87.3±2.0 87.4±1.8 87.9±2.2
AS-t 85.9±1.3 84.0±1.4 87.5±1.9 86.9±1.8 87.2±1.9
CN-t 87.3±2.0 86.8±1.8 86.4±1.9 86.8±2.1 87.4±2.1
Cos-t 87.5±1.6 88.1±2.0 87.4±1.8 87.3±1.9 87.5±2.1
PA-t 53.6±2.1 54.0±2.3 52.4±3.6 55.0±2.7 57.2±3.2
JC-t 87.5±1.9 88.4±1.9 87.5±1.8 87.4±1.7 88.0±1.8
MxO-t 86.9±1.9 87.7±1.3 87.4±1.5 87.2±1.6 87.5±1.3
MnO-t 86.9±1.2 86.6±1.5 86.6±2.2 86.5±1.9 87.7±1.8
NM-t 86.6±2.0 87.6±1.4 87.3±1.8 87.2±1.7 87.9±1.8
Prn-t 84.0±2.6 83.7±2.2 87.3±2.0 87.1±2.2 87.5±2.1

Table 4.4: Rank-performances w.r.t. AUC scores from Table 4.3 across all datasets.

mic-G mic-W mic-H mic-GH mic-WH

email-Enron-s 3.6±0.5 5.0±0.0 3.2±0.7 1.4±0.5 1.8±0.7
contact-high-school-s 4.0±0.4 4.9±0.3 3.0±0.4 1.7±0.5 1.4±0.4
NDC-substances-s 4.0±0.2 5.0±0.2 2.3±0.5 1.8±0.2 1.8±0.2
tags-math-sx-s 4.3±0.5 4.7±0.5 2.6±0.4 1.3±0.5 2.1±0.4
threads-math-sx-s 4.2±0.2 4.8±0.2 1.9±0.3 2.0±0.2 2.0±0.2
coauth-DBLP-s 3.1±0.3 3.2±0.6 3.0±0.0 2.8±0.4 2.8±0.4

email-Enron-t 4.8±0.4 4.1±0.5 3.0±0.4 2.0±0.4 1.1±0.3
contact-high-school-t 3.7±1.1 3.0±1.5 3.3±1.2 3.6±1.1 1.4±0.5
NDC-substances-t 3.3±0.6 3.3±0.6 2.8±0.3 2.8±0.3 2.7±0.6
tags-math-sx-t 4.3±0.5 4.5±0.9 2.8±0.7 2.1±0.5 1.2±0.5
threads-math-sx-t 4.2±0.7 4.7±0.4 2.2±0.5 2.1±0.5 1.8±0.6
coauth-DBLP-t 3.2±0.6 3.1±0.3 3.0±0.0 2.9±0.3 2.8±0.6
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Table 4.5: AUC scores for link prediction performed using XGBoost on various feature combinations:
G, W, H, GH, WH. Also shown are the t and p values for t-tests (with 5 + 5− 2 = 8 degrees of freedom)
performed over the best graph-based (among mac-G and mac-W) and the best hypergraph-based (among
mac-H, mac-GH, and mac-WH) link predictors for each dataset. As could be seen, for a 1% significance
level, most datasets support the hypothesis that hypergraph-based scores outperform graph-based ones.

mac-G mac-W mac-H mac-GH mac-WH t p

email-Enron-s 93.10±1.00 93.06±1.05 93.89±0.41 93.90±0.52 94.10±0.54 1.76 0.12
contact-high-school-s 93.40±0.46 93.54±0.41 93.46±0.65 93.59±0.72 93.68±0.44 0.47 0.65
NDC-substances-s 98.77±0.12 98.73±0.12 98.87±0.11 98.88±0.10 98.89±0.15 1.25 0.25
tags-math-sx-s 95.16±0.08 95.35±0.12 96.56±0.12 96.60±0.09 96.56±0.11 16.67 10−7

threads-math-sx-s 96.90±0.15 96.86±0.14 97.19±0.14 97.20±0.16 97.19±0.15 2.74 0.03
coauth-DBLP-s 97.79±0.02 97.79±0.02 99.51±0.00 99.52±0.00 99.51±0.00 173.00 10−15

email-Enron-t 74.44±1.50 78.29±1.64 79.05±2.14 79.56±1.83 84.76±1.40 6.00 10−3

contact-high-school-t 86.64±1.87 87.92±1.67 87.31±1.93 86.96±1.81 88.46±1.68 0.46 0.66
NDC-substances-t 58.89±0.06 59.15±0.05 61.01±0.07 61.08±0.06 61.41±0.07 52.54 10−11

tags-math-sx-t 90.80±0.40 91.63±0.35 91.31±0.34 91.53±0.33 92.23±0.30 2.60 0.03
threads-math-sx-t 84.66±0.25 84.95±0.27 90.59±0.14 90.59±0.13 90.77±0.15 37.69 10−10

coauth-DBLP-t 85.29±0.04 86.00±0.04 87.93±0.04 88.00±0.04 88.44±0.05 76.21 10−12

for B-s, B-t, and D-t, it performs better. Moreover, we see that the choice of classifier does not affect
the scores consistently across datasets, from Table 4.6, and hence it is recommended to try out a bunch
of classification algorithms before finalizing on the best performing one.

4.6.4 Standalone Feature Performances
For link prediction experiments in the standalone mode (Section 4.5.4), we show results only for a
single dataset: contact-high-school (dataset B) in Table 4.7.

Although we did not expect to do better than the baselines in the standalone mode, since individual
hypergraph scores might not be powerful link predictors, yet we observe decent performances in the
last four columns (the only ones that correspond to hypergraph-based scores). To make this point
clearer, we know that hypergraphs are more informative than graphs, but we do not make use of
the granular information up to the extent graphs do; hence the standalone scores are not expected to
perform by themselves. Moreover, our goal was not to “replace” the existing graph-topology based
scores with hypergraph-topology ones, but to “aid” the graph-based scores. In other words, we have
suggested some new features for the link prediction problem which do not outperform the existing ones
when seen individually, but when considered together, they contribute towards a better performance.
Going by a base predictor individually (row-wise), graph-versions (std-G) of Adamic Adar (AA) for
structural- and Cosine Similarity (Cos) for the temporal-mode perform best.

We consolidate these results for all datasets by finding the mean (over all base predictors) “rank”
among all standalone modes (std-G, std-W, std-Hm, std-Ha, std-H1, std-H2) in Table 4.8. This is
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Table 4.6: AUC scores for Logistic Regression (LR) for the six datasets, and corresponding t and p
values for one-sided t-tests (with 5 + 5− 2 = 8 degrees of freedom) performed over the best XGBoost
(XGB) scores from Table 4.5 and the best Logistic Regression (LR) based ones. As could be seen, all
datasets (except for one for which we have a negative t value) support the hypothesis “LR performs
better than XGB” on an average. Moreover, since we have low p values in the temporal case, it could
also be said that LR outperforms XGB by a greater margin in these cases. The conclusion we arrive at
is that different classification methods could either perform better or worse than each other, but on an
average, the hypergraph scores outperform the graph ones.

mac-H mac-GH mac-WH t p

email-Enron-s 93.52± 0.48 94.32± 0.46 93.32± 0.5 0.62 0.55
contact-high-school-s 92.85± 0.63 94.61± 0.76 93.52± 0.35 2.12 0.07
NDC-substances-s 98.22± 0.14 98.13± 0.12 99.08± 0.18 1.62 0.14
tags-math-sx-s 94.47± 0.03 96.51± 0.02 96.72± 0.07 2.10 0.07
threads-math-sx-s 94.92± 0.17 96.89± 0.2 96.54± 0.22 −2.42 0.04
coauth-DBLP-s 99.95± 0.0 99.76± 0.0 99.21± 0.0 860000.00 10−44

email-Enron-t 78.03± 2.14 78.87± 1.78 85.27± 1.34 0.53 0.61
contact-high-school-t 91.58± 1.88 86.4± 1.82 88.88± 1.67 2.47 0.04
NDC-substances-t 63.49± 0.1 62.88± 0.13 59.03± 0.02 34.08 10−9

tags-math-sx-t 91.84± 0.32 92.03± 0.31 93.9± 0.24 8.69 10−5

threads-math-sx-t 92.1± 0.05 91.4± 0.18 89.9± 0.08 16.82 10−7

coauth-DBLP-t 91.11± 0.06 88.01± 0.02 88.26± 0.0 68.37 10−12

Table 4.7: AUC scores (%) for structural (-s) and temporal (-t) link prediction using standalone features
for contact-high-school. Row ids AA–Prn represent base predictors.

std-G std-W std-Hm std-Ha std-H1 std-H2

AA-s 93.0±0.5 92.8±0.3 89.1±0.3 92.1±0.3 92.4±0.4 92.6±0.4
AS-s 91.2±0.3 88.1±0.2 69.7±0.3 91.9±0.3 92.6±0.4 92.8±0.4
CN-s 92.8±0.5 92.4±0.3 77.3±0.4 92.0±0.3 92.2±0.4 92.2±0.4
Cos-s 92.8±0.4 92.8±0.2 77.9±0.3 92.0±0.3 92.4±0.4 92.6±0.4
PA-s 63.6±0.6 62.0±0.8 55.0±0.4 56.0±1.2 62.6±0.8 62.1±0.9
JC-s 92.8±0.4 92.8±0.3 77.9±0.3 92.0±0.3 92.5±0.4 92.7±0.4
MxO-s 92.6±0.4 92.6±0.3 77.7±0.3 92.0±0.3 92.5±0.4 92.7±0.4
MnO-s 92.4±0.3 91.2±0.1 77.3±0.4 92.0±0.3 92.3±0.4 92.4±0.4
NM-s 92.8±0.4 92.7±0.3 77.9±0.3 92.0±0.3 92.5±0.4 92.6±0.4
Prn-s 90.6±0.4 90.1±0.2 77.9±0.3 92.0±0.3 92.4±0.4 92.6±0.4

AA-t 87.9±0.3 87.8±0.3 83.5±0.2 88.0±0.2 86.7±0.3 87.0±0.3
AS-t 87.5±0.2 84.8±0.3 67.1±0.3 88.0±0.2 87.1±0.3 87.5±0.3
CN-t 87.7±0.3 87.4±0.3 72.2±0.3 87.9±0.2 86.5±0.3 86.5±0.3
Cos-t 88.5±0.2 88.5±0.2 73.3±0.3 88.0±0.2 86.8±0.3 87.1±0.3
PA-t 53.8±0.3 53.8±0.3 51.2±0.4 50.3±0.4 52.5±0.4 52.3±0.4
JC-t 88.4±0.2 88.4±0.2 73.2±0.3 88.0±0.2 86.9±0.3 87.2±0.3
MxO-t 87.9±0.2 88.0±0.2 72.6±0.3 88.0±0.2 86.9±0.3 87.2±0.3
MnO-t 88.2±0.2 87.1±0.2 72.2±0.3 88.0±0.2 86.7±0.3 86.8±0.3
NM-t 88.3±0.2 88.2±0.2 73.2±0.3 88.0±0.2 86.8±0.3 87.1±0.3
Prn-t 85.8±0.2 85.0±0.2 73.3±0.3 88.0±0.2 86.8±0.3 87.1±0.3
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Table 4.8: Rank-performances w.r.t. AUC scores from Table 4.7 (standalone mode) across all datasets.
Here, -s and -t refer to structural and temporal respectively.

std-G std-W std-Hm std-Ha std-H1 std-H2

email-Enron-s 1.3±0.6 3.8±1.0 3.0±1.5 3.2±1.3 5.4±1.3 4.3±1.0
contact-high-school-s 1.8±1.2 3.2±1.3 6.0±0.0 4.5±0.8 3.2±0.9 2.2±1.0
NDC-substances-s 3.2±1.1 4.1±1.3 1.4±1.2 5.8±0.6 3.7±1.0 2.8±0.9
tags-math-sx-s 4.0±1.1 4.3±1.6 3.4±0.8 5.7±0.6 2.2±0.6 1.4±0.7
threads-math-sx-s 4.1±1.3 3.8±0.9 3.0±1.1 5.8±0.6 2.2±1.0 2.2±0.7
coauth-DBLP-s 3.4±0.4 3.4±0.2 3.6±0.4 3.8±0.8 3.2±0.8 3.6±0.2

email-Enron-t 2.9±0.7 1.6±1.2 3.8±1.2 2.1±0.7 5.8±0.4 4.8±0.4
contact-high-school-t 2.0±0.9 2.7±1.3 5.9±0.3 2.2±1.5 4.4±0.8 3.6±0.8
NDC-substances-t 3.2±1.4 3.1±1.6 2.6±1.0 4.4±0.9 4.1±1.2 3.5±1.0
tags-math-sx-t 4.0±0.9 4.0±1.6 3.6±0.9 5.8±0.6 1.8±0.5 1.8±0.7
threads-math-sx-t 4.1±1.3 3.6±1.1 3.6±0.9 5.8±0.6 1.6±0.8 2.2±0.6
coauth-DBLP-t 3.4±0.4 3.2±0.8 3.6±0.4 3.8±0.8 3.4±0.2 3.6±0.2

how it has to be interpreted: for example, for dataset A, in the structural mode rank of std-G being
1.3± 0.6 means out of the six standalone modes, std-G stands at a mean position of 1.3 (with variance
0.6), when evaluated across all base predictors.

4.7 Conclusion
Structural (topological) node similarity scores have a long history in similarity computation, and
have been equally successful as well. Also, hypergraph networks are very frequently used in works
involving similarity computation, albeit not being exploited for the task per se. We set out to use
the underlying hypergraph structure of networks to generate new features for similarity computation.
Apart from establishing a strong theoretical foundation by devising functional templates that could
help standard similarity computation scores getting translated from graphs to hypergraphs, we are also
able to elucidate hypergraphs’ contribution in predicting links. We perform a number of experiments
to show the importance of using hypergraph-based topological features for similarity computation,
including showing a mutual-information based perspective. A few take-away messages are:

1. Higher-order structure does have richer information than graphs.

2. When available, using the underlying hypergraph structure would term fruitful in link prediction.

3. Various matrix norms combine hyperedge information in different ways; the best bet is to use
multiple norms and choose the best.

4. Unless the similarity computation model overfits, all hypergraph features should be used, if
possible.
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Chapter 5

Sample Hard, Learn Harder: Negative
Sampling in Hyperlink Prediction

“I bow to the saints, who are even-minded towards all and have no friend or foe, just as a

flower of good quality placed in the palm of one’s hands communicates its fragrance alike

to both the hands. . . . Again, I greet with a sincere heart the malevolent class, who are

hostile without purpose even to the friendly, to whom others’ loss is their own gain, and

who delight in others’ desolation and wail over their prosperity.”

∼ Goswami Tulasīdās

H
YPERLINK prediction refers to the problem of predicting higher-order relations (hyperedges) in
hypergraphs. Being a two-class classification problem, it treats hyperlinks and non-hyperlinks

as “positive” and “negative” classes respectively. However, just as is the case with link prediction,
hyperlink prediction too suffers from the problem of extreme class imbalance. Given this context,
“negative sampling” – under-sampling the negative class of non-hyperlinks – becomes mandatory for
performing hyperlink prediction. No prior work on hyperlink prediction [121, 132, 133] deals with
this problem; in this chapter, we deal with it explicitly. More specifically, we leverage graph sampling
techniques for sampling non-hyperlinks in hyperlink prediction. Our analysis clearly establishes the
effect of random sampling, which is the norm in both link- as well as hyperlink-prediction. Further,
we formalize the notion of “hardness” of non-hyperlinks via a measure of density, and analyze
its distribution over various negative sampling techniques. We experiment with some real-world
hypergraph datasets and provide both qualitative and quantitative results on the effects of negative
sampling. We also establish its importance in evaluating hyperlink prediction algorithms.
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5.1 Introduction
Although the problem of hyperlink prediction (HLP) has not been explored much, we have enough
literature on the topic [11, 121, 132, 131] (and much more on its graph-variant, viz., link prediction
(LP) [66, 69, 72, 114]) to vouch for its importance. When posed as a supervised learning problem,
where “presence of hyperedge” and “absence of hyperedge” are the positive and negative classes
respectively, HLP suffers from extreme class imbalance (ECI), with positive class being the minority
one. ECI haunts LP too, and has been thoroughly discussed in the literature as well [33, 67, 68, 126],
but with HLP, the situation is much worse owing to the arbitrariness in the number of nodes allowed in
a hyperedge. Hence, the solutions provided to combat ECI in usual networks (graphs) for LP could not
be directly extended to HLP, at least not without a careful analysis thereof.

We consider the Southern women club (SWC) social hypergraph from Davis et al. [23] illustrated
in Figure 5.1 that connects eighteen women through twelve hyperlinks, each corresponding to an event
they had attended together. All non-hyperlinks from the hypergraph have been plotted in Figure 5.2,
with the color shade in each vertical bar denoting edge-density (ref. Definition 5.1) distribution for a
given hyperedge size. Although this being a dense hypergraph is atypical of real-world hypergraphs,
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Figure 5.1: The Southern Women Club (SWC) hypergraph by Davis et al. [23]. For a more fruitful
analysis, we have excluded one 11-sized hyperedge from the original hypergraph.
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CNS

MNS

SNS

Figure 5.2: Edge density and size distribution of non-hyperlinks in the SWC events hypergraph.

we could notice the existence of zero-density non-hyperlinks in the left bottom corner of the plot.
However, even for such small a hypergraph, one could compare the positive class size (denoted by red
asterisks) w.r.t. that of the negative class (the entire histogram), only to reinforce the existence of ECI
in a HLP problem.

Of all the solutions available in the literature to treat ECI, majority-class sub-sampling (here,
negative sampling (NS)) is the one that has been prescribed strongly. Other methods (e.g., minority-
class over-sampling [19]) further increase the burden on HLP by necessitating computation of prediction
scores for each point in the over-sampled positive class as well as those in the negative class (which is
already huge in number). Where on one hand, NS makes the HLP problem computationally tractable,
on the other, it poses the danger of misinterpretability of results (comparing two HLP algorithms, for
instance) due to test set undersampling. The threat has been thoroughly argued about by Lichtenwalter
et al. [67, 68] and Yang et al. [126] for LP. One technique that works towards nullifying this effect is
“multiple” negative samplings.

In this chapter, we provide an extensive analysis of NS for HLP, but since a hypergraph has
enormous number of negative patterns, our analysis is limited to a handful of NS algorithms. We
propose four different approaches for NS: Uniform Negative Sampling (UNS), Sized Negative Sampling

(SNS), Motif Negative Sampling (MNS), and Clique Negative Sampling (CNS), with the last three of
them focused on the regions bounded by blue, pink and green boundaries in Figure 5.2. Of the four,
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UNS and SNS are both motivated by random NS in LP [4], and have already been used in the literature
to predict new recipes [132] and new email interactions [121]. We derive MNS from a motif-based
representative subgraph sampling [52, 1] and CNS is our attempt towards developing a 1-hop based
equivalent of NS [67] to HLP. For our analysis, we consider the “temporal” HLP problem, wherein we
take a “past” snapshot of hypergraph H (or observed hypergraph), and predict “future” (unobserved)
hyperlinks.

5.1.1 Key Contributions
1. We show the importance of negative sampling in hyperlink prediction, something that hasn’t

been done in the past.

2. We contribute towards two negative sampling benchmarks that could be used by hyperlink
prediction practitioners in the future.

3. We perform thorough cross-validation analysis of models learnt using various negative
sampling techniques to show their effect on hyperlink prediction.

5.2 Methodology

5.2.1 Characterizing Hardness of Prediction
Yang et al. [126] suggest avoiding sampling the test data as much as possible, so that LP could be
evaluated fairly. But under unavoidable circumstances, test set has to be sampled, although we propose
doing so not without acknowledging some notion of “hardness” in predicting hyperlinks.

Benson et al. [11] point out several properties of a hyperlink F = {v1, · · · , vs} that play a key
role in its evolution in a hypergraph H = (V,F, τ) over time: (i) the connectivity among its incident
nodes v1, · · · , vs in the projected graph η(H) right before F was formed, and (ii) the strength of these
connections. These observations can be generalized to arbitrary-sized hyperlinks through the notion of
a hyperlink’s edge-density (ED) defined as per Definition 5.1.

Since ED plays an important role for hyperlink evolution, it could be used to characterize the
“hardness” of HLP. In layman terms, hardness in predicting the true class of a test non-hyperlink F ∈ F̂

denotes how hard it is to predict F as a pattern from the negative class. Let us formally define it as
follows:

Definition 5.1 (Hardness of a non-hyperlink). Given a HLP dataset (Htr, Fte, F̂te), the hardness

h : F̂ → [0, 1] of predicting the true class of a non-hyperlink F̂ ∈ F̂te is defined as one being
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(a) Size distribution (SD) (b) Edge-density distribution (EDD)

Figure 5.3: Size distribution (SD) and edge-density distribution (EDD) of hyperlinks – the positive
class – in email-Enron.

proportional to its edge-density ed(F̂ ;Htr) defined as:

h(F̂ ) ∝ ed(F̂ ;Htr) :=
2 ·
∣∣∣η(F̂ ) ∩ η (Ftr)

∣∣∣
|F̂ | ·

(
|F̂ | − 1

) , (5.1)

Figures 5.3a and 5.3b respectively show the hyperedge size distribution (SD) and the edge-density
distribution (hardness) as defined in eq. (5.1).

5.2.2 Uniform Negative Sampling (UNS)
This is the easiest of the four NS algorithms we describe in this section. For a hypergraph H = (V,F),
the UNS algorithm picks a sample of k non-hyperlinks F̂sam uniformly at random from the set of all
non-hyperlinks F̂. The non-hyperlink sizes of F̂sam are expected to be binomially distributed, which
could be validated by Figure 5.4, which shows the size-distribution (SD) of non-hyperlinks in F̂sam for
one dataset (email-Enron). Figures 5.3a and 5.4 show SD of the positive class and negative class (as
sampled by UNS) respectively, which can be compared to see how different they are from each other.

As is clear from Figure 5.4, UNS substantially “blows-up” the non-hyperlink sizes, where its
median would be around |V |/2, which for a 1000-node network amounts to 500-node non-hyperlinks,
which is impractical for almost all applications. In email-Enron alone, one one hand, the largest

observed hyperedge contains 18 nodes (see Figure 5.3a), whereas the mean non-hyperedge size is a
whopping 72 (see Figure 5.4). Such a scenario, when seen from the perspective of HLP, ends up with
a single trivial feature discriminator, viz., “hyperlink size”, which successfully separates the positive
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Figure 5.4: Size distribution (SD) of the sampled negative class of non-hyperlinks sampled via UNS
for email-Enron. It is to be compared with the size distribution of the positive class of hyperlinks
plotted in Figure 5.3a.

class from the negative, since the size-distribution for the former is fairly left-skewed, and for the latter,
it is binomial. Since this renders UNS as a technique that generates one of the easiest-to-discriminate
negative samplings, we limit our discussion on UNS merely to theory, and recommend it never to be
used in practice. Neither do we conduct any HLP experiments for UNS in this thesis.

If it were for UNS, it would sample non-hyperlinks akin to the negative class shown in Figure 5.2,
uniformly at random.

5.2.3 Sized Negative Sampling (SNS)
SNS overcomes the shortcomings of UNS by sampling non-hyperlinks such that their SD matches that
of hyperlinks. SNS is a slight variant of UNS in that the target SD (i.e., that of the sampled negative
class) Pr−(S = s) is fixed to that of the positive class (Pr+(S = s)), and not a binomial as per
Figure 5.4. Once a size s has been sampled according to Pr+(S = s), a non-hyperlink is sampled
randomly. The SD of non-hyperlinks sampled with SNS exactly follows the positive class SD (see
Figure 5.5a).

Since SNS fixes the “size-blow-up” issue in sampled non-hyperlinks, it should ideally be the
one-stop solution to negative sampling. But there is yet another problem – a subtler one at it: since
real-world hypergraphs are heavily sparse (much sparser than graphs), sampling non-hyperlinks via
SNS biases the binary classification problem w.r.t. the challenge in predicting the true class of a
test non-hyperlink. As we have already characterized the hardness of predicting the true class of a
non-hyperlink in Definition 5.1 via ED, we could monitor the edge-density distribution (EDD) of
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(a) Size distribution (SD) (b) Edge-density distribution (EDD)

Figure 5.5: Size distribution (SD) and edge-density distribution (EDD) of non-hyperlinks – the negative
class – in email-Enron sampled using Sized Negative Sampling (SNS).

non-hyperlinks sampled via SNS against hyperlinks.
Figure 5.5b shows the edge-density distribution (EDD) of non-hyperlinks sampled via SNS. It can

be seen that most of these non-hyperlinks (negative patterns) have low ED, which makes it “easy” for a
HLP algorithm to reject them as positive patterns, whose EDD has been plotted in Figure 5.3b. Since
most hyperlinks have a high ED, it could be assumed that ED among an arbitrary set of nodes has a
positive correlation with their probability of forming hyperlinks in the future. The positive class EDD
(Figure 5.3b) shows that in most cases, incident nodes of a test hyperlink are well-connected with each
other – a pattern not observed for non-hyperlinks sampled via SNS (Figure 5.5b). Hence, an SNS
based positive-negative split not only poses little challenge to a predictor trained on such a dataset,
but also misleads HLP evaluation.

An SNS algorithm would sample non-hyperlinks from within the “blue” enclosure depicted in the
bottom left corner of Figure 5.2. This paves way for yet another NS algorithm: MNS.

5.2.4 Motif Negative Sampling (MNS)

The hardness of predicting a non-hyperlink F̂ ∈ F̂ to be of the negative class (i.e., True Negative
Rate) depends upon the intra-connectivity structure of F̂ . We have seen that SNS trivializes the HLP
problem by sampling low-density non-hyperlinks thereby skewing the EDD for negative class towards
the left (Figure 5.5b). This makes it easy for an HLP algorithm to discriminate it with the positive class
(for which the EDD is skewed towards the right (Figure 5.3b)). To address this issue, we propose an
approach that samples connected subgraph components (CCs) from the clique-expanded graph η(Htr)

of Htr. The nodes of these CCs then form the sampled non-hyperedge.
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Algorithm 4: The MNS algorithm
Input: A hypergraph H = (V,F) and size s of the non-hyperlink to be sampled
Output: Sampled non-hyperlink F̂

1 E = η(F) // Edges of induced graph η(H)
2 e0 = RANDOMCHOICE(E) // sample initial edge uniformly at random

3 F̂ = {u | u ∈ e0} // set F̂ to nodes of initial edge e0

4 while |F̂ | < s do
5 E′ = {e ∈ E : |e ∩ F̂ | = 1}
6 if E′ = ∅ then
7 go to 2

8 e = RANDOMCHOICE(E′)

9 F̂ = F̂ ∪ {u | u ∈ e}
10 return F̂

We propose Motif Negative Sampling (MNS) that uses Mfinder [52], which is a stochastic algorithm
used to estimate the concentration of a particular motif in a graph without exhaustive enumeration.
Our aim here is to sample non-hyperlinks that are harder to reject by an HLP algorithm, as compared
to those sampled by SNS.

Algorithm 4 samples a non-hyperlink of size s by sampling a s-connected component from the
underlying graph η(H) of a hypergraph H. It first selects an edge at random and adds its incident
nodes to the sample; and keeps adding more and more nodes adjacent to the already-sampled ones.
At each step, all edges that contain exactly one sampled node are considered as the candidate set of
edges for that step, and keeps getting updated. The sampling process stops when there are exactly
s nodes, which ultimately form the sampled non-hyperlink (it not being a hyperlink is ensured by
rejection sampling). The sampling is done in a way such that the nodes of F̂ would form a connected
component (i.e., would have at least s− 1 links in η(H)). Note that there could be more links between
a sampled set of nodes than those chosen by the MNS algorithm, and all of them ultimately form the
non-hyperlink.

Figure 5.6b shows the distribution of edge-density of non-hyperlinks sampled via MNS, which
should immediately be compared with that of the positive class from Figure 5.3b. It is evident that
the number of non-hyperlinks having high ED in Figure 5.6b is quite high as compared to that using
SNS (Figure 5.5b). Moreover, it is clear to see that ED of any non-hyperlink F̂ sampled using MNS

(Algorithm 4) satisfies the following:
2

|F̂ |
≤ ed(F̂ ;H) ≤ 1, since the minimum edge-density for

an s-node sample would occur for a line-subgraph (i.e., when s nodes would be linked by s − 1

links), thereby resulting in an edge density of
2 · (s− 1)

s · (s− 1)
=

2

s
. This owes to the fact that MNS gives
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(a) Size distribution (SD) (b) Edge-density distribution (EDD)

Figure 5.6: Size distribution (SD) and edge-density distribution (EDD) of non-hyperlinks – the negative
class – in email-Enron sampled using Motif Negative Sampling (MNS).

connected subgraphs, and hence, the ED of small-sized non-hyperlinks is likely to be high.
However, it could be noted that MNS is not completely unbiased, in that high degree nodes have a

higher probability of getting sampled. Such bias is also introduced when random walks over graphs
are used to find a representative sub-graph of original graph and there have been approaches in the
literature to rectify such biases, one of them being the Metropolis Hastings algorithm [86]. However it
cannot be used reliably in case of negative sampling in hypergraphs since the number of edges to be
sampled is quite small and hence convergence guarantees cannot be ensured.

Non-hyperlinks sampled via MNS would occupy the “pink” region indicated in Figure 5.2.

5.2.5 Clique Negative Sampling (CNS)
Where one extreme NS technique that makes prediction easy for an HLP algorithm is UNS, another
extreme is to make it tough, by sampling cliques from the clique-expanded graph η(H) of a hypergraph
H. This ensures the edge density of sampled hyperedges to always be unity, which, according to our
measure of hardness (Definition 5.1), returns the hardest-to-classify set of non-hyperlinks. However,
since clique-finding in a graph is an NP-complete problem, we do not compute them directly. Instead,
motivated by the geodesic-distance based NS technique by Lichtenwalter et al. [67], we develop a
hypergraph equivalent of their “1-hop” sampling approach via a simple heuristic to efficiently sample
non-hyperlinks as per Algorithm 5. Since a hyperlink F (positive pattern) forms a clique in the induced
graph η(H) of H, this very information could be exploited to sample a non-hyperlink F̂ such that
F̂ too follows F . To be precise, we replace a node v0 ∈ F0 (the existing hyperlink) with a node v1

which is a common neighbor to all of the remaining nodes in F0 \ {v0}, to result in a new set of nodes
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Algorithm 5: The CNS algorithm
Input: A hypergraph H = (V,F), s = size of non-hyperlink to be sampled
Output: Sampled non-hyperlink F̂

1 F0 = RANDOMCHOICE(F) // Randomly sample a hyperlink
2 VF = {u | u ∈ F0} // Nodes of F0

3 v0 = RANDOMCHOICE(VF ) // Randomly sample a node for removal
/* Randomly select a node from the neighborhood of F0 \ {v0} */

4 Vn = {u ∈ V | ∃F ∈ F s.t. {u, v} ⊆ F, ∀v ∈ F0 \ {v0}}
5 if Vn = ∅ then
6 go to 1

7 v1 = RANDOMCHOICE(Vn)

8 F̂ = (F0 \ {v0}) ∪ {v1}
9 return F̂

F̂ := (F0 \ {v0}) ∪ {v1}. This new node-set F̂ forms a clique in η(H) and can be considered as a
negative pattern (non-hyperlink) as long as it is not a hyperlink. The exact procedure for CNS has been
described in Algorithm 5.

Note that although this heuristic does not guarantee the existence of such common neighbor nodes
v1 (step 7 in Algorithm 5), we, however, empirically observe that such nodes do exist. Extensions to
CNS (e.g., to add/remove multiple nodes at once, etc.) could also be implemented. Moreover, by no
means does Algorithm 5 sample all possible cliques; it only gives a sample which we use for HLP.
CNS ensures all sampled non-hyperlinks to have a unit edge density (ref. Figure 5.7b), which is much
different from SNS (ref. Figure 5.5b), where most of them have extremely low ED (if not zero). Hence,
CNS provides the hardest of non-hyperlinks whereas the hardness of those sampled from MNS lies in
the moderate range (ref. Figure 5.6). One could compare the SD and EDD for non-hyperlinks sampled
using CNS (Figure 5.7) with those of the positive class (Figure 5.3) and see that they closely match
with each other.

Non-hyperlinks sampled by CNS gives patterns from the “green” region marked at the top in
Figure 5.2. In summary, there is a whole spectrum of NS algorithms that could sample non-hyperlinks,
and we have explored four of them, viz., UNS, SNS, MNS, and CNS.

5.3 Related Work
A rigorous study of HLP began with the near-seminal works [3, 135] on hypergraph Laplacian and
spectral clustering methods. Xu et al. [121] explore the latent representation of hyperlinks obtained
via those of nodes and a novel entropy-based approach to combine them. More recently, Zhang et
al. [131, 132] proposed CMM, which is the current state-of-the-art for HLP. Benson et al. [11] study
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(a) Size distribution (SD) (b) Edge-density distribution (EDD)

Figure 5.7: Size distribution (SD) and edge-density distribution (EDD) of non-hyperlinks – the negative
class – in email-Enron sampled using Clique Negative Sampling (CNS). When compared with the
positive class in Figure 5.3, both ED and SDD closely match.

the evolution of hyperlinks of size 3 and 4 in a hypergraph.
As mentioned before, HLP in hypergraphs is analogous to LP in graphs. Though sampling non-

links are necessary when LP is posed as a classification problem, it has received little attention in
the literature [66, 4, 67]. Most works randomly sample non-links, which is still justified since the
space of possible non-links is polynomial in |V |. However for hypergraphs, where the space of all
possible non-hyperlinks is exponential in |V |, carefully devised non-hyperlink sampling approaches
are mandatory.

Sampling non-hyperlinks is akin to subgraph sampling, which is commonly performed to sample
frequent patterns from graphs. More recently, there has been enough attention on mining frequent
patterns called motifs in a graph to understand the evolution of edges therein. A motif of size k is
a k-connected component of the graph. There exists randomized methods such as Mfinder [52] and
GUISE [1] to mine these frequent motifs. One of our NS methods (MNS) has been inspired from such
motif sampling techniques.

5.4 Experiments
We take seven different temporal hypergraph datasets – email-Enron, contact-high-school,
contact-primary-school, tags-math-sx, MAG-Geo, coauth-DBLP, NDC-substances – from
Benson et al. [11] and perform various HLP experiments on them. Also, we use the same k-core
based sampling technique as used by Liben-Nowell et al. [66] to reduce the size of MAG-Geo and
coauth-DBLP datasets since they are huge hypergraphs. More specifically, we retain only those nodes
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which have hyperdegree (number of incident hyperedges) greater than a threshold k = 16.
We use five different HLP algorithms: Bayesian Sets (BS) [35], Factorization Machines (FM) [85],

Hyper Katz (Katz) [54], Hyper Common Neighbors (CN) [132, 78], and Coordinated Matrix Min-
imization (CMM) [132]. To evaluate an HLP algorithm, we use the area under ROC curve (AUC)
metric. In addition, we also report certain statistics on multiple NS techniques, which ultimately gives
insights into which technique works best.

All of the datasets used are temporal in nature. Following the data preparation step described in
Chapter 2, we perform a temporal split of 80:20 (i.e., ρtr = 0.8) where hyperedges are sorted according
to their timestamp1 and first 80% of hyperedges are used for training and feature extraction, whereas
the remaining 20% are used for testing. The NS ratio (i.e., ratio of negative samples (non-hyperlinks)
to positives (hyperlinks) ν from Chapter 2) is fixed to 10:1 (ν = 10), except for NDC-substances
where it is 5:1 (ν = 5, since on an average, the data has has bigger hyperedges). We use the AUC
score for the evaluation and comparison of HLP algorithms, since it is a standard metric that has been
widely used in the LP literature. We experiment with multiple NS ratios (ν) to analyse its impact on the
evaluation metric. We perform five different negative samplings per dataset per hyperlink prediction
approach.

5.5 Results and Discussion
This section provides detailed analyses of the impact of different NS techniques on the performance
of HLP algorithms. We also provide a comprehensive analysis of comparing some properties of
non-hyperlinks sampled using different methods with those of hyperlinks.

5.5.1 Hyperlink Prediction Performance
The AUC scores obtained by applying each of the five HLP algorithms on the seven datasets have been
populated in Table 5.1, which has been divided into three parts corresponding to negative sampling
techniques SNS, MNS, and CNS. In each row, AUC score for the best performing algorithm has
been underlined. But since our main aim is not to compare between HLP algorithms, scores for NS
algorithms that give the best performance for a given HLP algorithm has been bold-faced. The first
observation we make is that except for CMM [132], all other HLP algorithms perform their best when
compared against a SNS-sampled negative class. CMM, which is supposed to be the current state-
of-the-art in HLP, performs its best when evaluated against either MNS or CNS based negative
sampling. Another striking point that Table 5.1 reveals is that no dataset has a unanimous best
performing HLP algorithm, and instead varies with the NS algorithm. For example, according to
SNS, MNS, and CNS, the best algorithm for the tags-math-sx (tms) dataset turns out to be Katz,

1Multiple timestamps are resolved by using the earliest one.
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Table 5.1: AUC scores (%) for HLP using BS, FM, Katz, CN, and CMM on seven datasets, where NS
is performed via SNS, MNS, and CNS. Avg. reduction:
SNS→MNS: BS=21%, FM=12%, Katz=36%, CN=43%, CMM=−28%
SNS→CNS: BS=35%, FM=36%, Katz=44%, CN=44%, CMM=−33%.

Sized NS (SNS) Motif NS (MNS) Clique NS (CNS)
Dataset BS FM Katz CN CMM BS FM Katz CN CMM BS FM Katz CN CMM
email-Enron 72.7 81.8 70.1 66.0 55.2 69.3 77.3 29.0 24.3 39.9 37.9 44.8 35.5 27.8 59.7
contact-high-school 64.6 69.9 99.4 99.2 57.8 49.9 63.9 77.0 77.4 64.8 47.5 65.8 62.2 66.4 65.9
contact-primary-school 71.1 60.2 93.9 93.4 49.2 54.1 54.4 67.5 73.1 54.2 49.8 59.6 57.2 62.4 61.8
coauth-DBLP 63.9 69.9 71.2 74.9 38.8 38.3 46.8 16.8 21.9 61.9 37.6 38.4 22.1 29.9 54.7
NDC-substances 95.9 80.0 85.0 94.5 60.6 89.9 75.7 81.2 23.1 74.2 73.8 60.4 79.0 58.1 65.7
tags-math-sx 95.8 75.2 99.2 98.9 22.8 75.5 64.9 75.7 78.5 53.5 63.9 62.4 51.9 57.3 59.0
MAG-Geo 78.4 53.9 98.1 97.5 26.7 49.4 50.5 46.5 54.3 50.2 41.6 45.7 40.1 51.2 47.1

CN, and BS respectively. One final point we want to make w.r.t. this table is the general trend of
reduction in AUC scores as we move from the leftmost block (SNS) to the rightmost one (CNS). The
average reduction has been indicated in the table caption, according to which, simple extensions of link
prediction such as CN and Katz have the maximum average reduction (of ∼ 44%), and the CMM
algorithm, which actually “learns” to pick hyperlinks out of a bag of hyperlinks and non-hyperlinks
sees an increment of 33% as we go from SNS to CNS sampling.

5.5.2 Edge Density Distribution
We plot the edge-density distributions (EDD) for the email-Enron dataset in Figures 5.5b, 5.6b,
and 5.7b, whereas EDD for hyperlinks have been plotted in Figure 5.3b. For a discussion, see
Sections 5.2.2 – 5.2.5.

5.5.3 Common Neighbor vs. Edge Density
Figure 5.8 shows the scatter plot of common-neighbor (CN) scores and edge-densities (ED) for each
test pattern in the contact-high-school dataset, where the blue crosses and pink discs represent
non-hyperlinks and hyperlinks respectively. It is clear from these plots that while SNS sampled
non-hyperlinks have lower ED values and lower CN scores as well, the MNS algorithm samples
non-hyperlinks in a way that CN is not able to distinguish between the two classes.

5.5.4 True Negative Rates
To better explain the impact of NS algorithms on HLP, we perform HLP via supervised learning, i.e.,
by using CN scores as a single feature to learn a Logistic Regression classifier (LRC). We perform a
cross validation by first preparing three different validation sets, each formed by sampling the negative
class by a different NS algorithm. We then train one LRC per NS algorithm (with NS performed
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via the respective algorithm to generate training data) which is subsequently tested on all three cross
validation sets. The performance of classifiers in terms of true negative rates is shown in Figure 5.9.
An LRC trained using MNS (Figure 5.9a) or CNS (Figure 5.9b) can easily predict negatives from SNS
truly. However, the same is not true for a classifier trained on SNS samples as shown in Figure 5.9c. A
typical CN score distribution for three different validation sets defined above and positive hyperlinks is
shown in Figure 5.9d. Cross validation results of LRC models are evident from this distribution as
most of the SNS sampled hyperlinks have a low CN score whereas MNS and CNS sampled hyperlinks
have CN scores that are comparable with the CN scores positive hyperlinks.

Please note that in this chapter, we do not propose a new method to perform hyperlink prediction.
Instead, as all studies in class imbalance do, we have proposed techniques to balance the data and have
discussed in each of the cases, the effects they have on the hyperlink prediction problem. The main
take-home message is that “One should not believe a model where the negative (or majority) class
was randomly undersampled”, since this would be an over-promising model. Moreover, we “have”
to perform negative sampling – something that’s inevitable. For unsupervised learning, it’s not too
problematic since there are no parameters to be learnt. But for supervised learning, the way we sample
the negative class while training a model decides how “hard” the model trains itself. In other words,
this decides the generalizability of our model. If it’s trained on a “simple” negative sampling (e.g.,
uniformly randomly sampled), we get a “lazy” classifier that won’t work in practise, since it learns the
wrong parameters. On the other hand, using a “hard” negative sampling challenges the classifier to
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Figure 5.8: Common neighbor score (CN) vs. edge-density (ED) scatter-plots for hyperlinks (pink
discs ) and non-hyperlinks (blue crosses ×); marker size is proportional to frequency count.
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a greater extent, and learns better rules for hyperlink vs. non-hyperlink. Hence, a model trained on
MNS or CNS would be able to generalize better than that trained on SNS.

(a) Classifier trained via MNS. (b) Classifier trained via CNS.

(c) Classifier trained via SNS. (d) CN score distribution for test data.

Figure 5.9: (a–c): True Negative Rates (TNR) for CN-based Logistic Regression HLP classifiers
trained for one NS algorithm and tested on all. (d): Common neighbor (CN) score density plots
for test hyperlinks (positive class, blue pluses +), and test non-hyperlinks (negative class) sampled
using SNS (pink crosses ×), MNS (green wedges N), and CNS (red stars ?). All plots are for
contact-high-school.
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5.6 Conclusion
Under-sampling the majority class in class-imbalanced scenarios is a common practice. But hyperlink
prediction (HLP) is atypical, in that there exists extreme class imbalance, with the set of non-hyperlinks
being the majority class. We set out to analyze four negative sampling (NS) techniques for HLP,
viz., Uniform (UNS), Sized (SNS), Motif (MNS), and Clique (CNS) based NS. We analyzed size,
edge-density, and a usual predictor score (CN) distribution for candidate hyperlinks extracted via all NS
techniques and found that while UNS is completely useless for HLP, SNS makes the negative class
follow the same size distribution as the positive class. But MNS and CNS go one step further and
focus on matching their edge-density distributions as well, making the HLP problem challenging
in nature. While the evaluation of an HLP algorithm on test sets sampled via SNS, MNS, and CNS is
found to vary drastically, a specialized cross-validation of HLP via the supervised learning paradigm
further shows that only MNS and CNS generalize well for HLP. In essence, we prescribe using
either MNS or CNS for sampling non-hyperlinks for HLP, since they learn fair and generalized HLP
predictors that would perform as expected in practical scenarios.
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Chapter 6

Clique and Shut: A New Model to Predict
Hyperedges

“In the long history of humankind (and animal kind, too) those who learned to collaborate

and improvise most effectively have prevailed.” ∼ Charles Darwin

A
KIN to the link prediction problem in graphs, we deal with hyperlink (higher-order link) prediction
in hypergraphs. With a handful of solutions in the literature that seem to have merely scratched

the surface, we provide improvements for the same using a matrix completion based algorithm.
Motivated by observations in recent literature – Benson et al. [11] – we first formulate a “clique-
closure” hypothesis (viz., hyperlinks are more likely to be formed from near-cliques rather than from
non-cliques), test it on real hypergraphs, and then exploit it for our very problem. In the process, we
generalize hyperlink prediction on two fronts: (1) from small-sized to arbitrary-sized hyperlinks, and
(2) from a couple of domains to a handful. We perform experiments (both the hypothesis-test as well
as the hyperlink prediction) on multiple real datasets, report results, and provide both quantitative and
qualitative arguments favouring better performances w.r.t. the state-of-the-art.

6.1 Introduction
Hyperlink prediction refers to predicting future/missing hyperlinks in a given hypergraph [121, 132, 11]
(ref. Chapter 2, Definition 2.5). We draw inspirations from recent literature and the existing state-
of-the-art, i.e., Coordinated Matrix Minimization (CMM) [132], to solve the problem of predicting
arbitrary-sized hyperlinks in networks. We first formulate a Clique-Closure Hypothesis (CCH), which
can be summarized as follows: Hyperlinks in a network are more likely to be formed from closures
of cliques (and near-cliques) rather than those of non-cliques. In simpler terms, we hypothesize that
for a given hyperlink, prior to its first occurrence, its incident nodes should have had more interactions
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t = t1 t = t2 t = t3 t = t4

Figure 6.1: A toy example: For i = 1, 2, 3, 4, solid hyperlinks formed exactly at t = ti, are eventually
shown as dotted connections. The clique-closure hypothesis (CCH) we propose says that for a current
hyperlink (solid) it is highly likely that its nodes had been densely connected via past connections
(dotted).

than a set of arbitrary number of nodes usually does. I.e., we expect every hyperlink to have evolved

gradually, rather than having spontaneously “sprung-up”. Consider the example shown in Figure 6.1,
where it could be noted how at any t = ti, smaller hyperlinks from the past (dotted) combine together
to form larger ones (solid) in the present.

We first test CCH on real datasets, and then use it for hyperlink prediction via a method we term
“Clique-Closure based Coordinated Matrix Minimization” (C3MM). We ingest CCH into the objective
function of CMM to get C3MM, and then solve it in a similar fashion. Choosing datasets from different
domains, we note significant improvements over CMM. Major improvements come from the fact that
C3MM gives a chance to those hyperlinks that could explain existing relations.

In Section 6.2, we introduce, formally define, and give intuitive explanations our clique-closure
hypothesis (CCH). Then, embed CCH into the hyperlink prediction process in Section 6.3, resulting in
our prediction algorithm C3MM, post which we discuss the state-of-the-art in hyperlink prediction in
Section 6.4. Finally, we describe our experimental process in Section 6.5 and discuss the results on
both CCH’s hypothesis test as well as hyperlink prediction using C3MM in Section 6.6, before we
conclude in Section 6.7.

6.1.1 Key Contributions
1. We formulate and test a clique-closure hypothesis (CCH) for hypergraph network evolution.

As a result, we provide novel insights into hyperlink evolution.

2. We provide a hyperlink prediction algorithm C3MM that significantly improves upon
CMM.
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3. We extend hyperlink prediction for hyperlinks of arbitrary size and to multiple domains.

6.2 The Clique Closure Hypothesis
We first formulate our clique-closure hypothesis (CCH), which argues that nodes in a hyperlink
remain very densely-connected in the hypergraph right before the hyperlink’s formation. We provide
hypothesis test for validation of CCH in real world datasets and come up with a method for hyperlink
prediction which exploits it to improve performance of the current state-of-the-art. Occurrence of a
hyperlink marks the collaboration among multiple entities via a single common event. It is intuitive that
subsets of these entities would have interacted in some form in the past, rather than the hyperlink getting
formed spontaneously. In formal terms, in a temporal hypergraph H = (V,F, τ), corresponding to a
hyperlink F ∈ F formed at a given time τ(F ), we could expect to find some hyperlinks F ′ ∈ F<τ(F )

that overlap densely with subsets of nodes incident on F . Since if that were not true, there is not much
explanation – at least not any using the hypergraph topology – as to why the relation F is formed
in the first place. In the projected graph η(H<τ(F )), this translates as densely connected subgraphs
(near-cliques) or sometimes even cliques. In simple words, CCH states that with high probability,
nodes of a hyperlink were part of dense subgraphs before they formed hyperlinks. We formally
define CCH in this section, but before doing so, we need to keep certain concepts well-defined, since
their equivalents do not exist in the literature.

6.2.1 Some Salient Concepts
We define hypergraph density of a hypergraph H as hd(H) := gd(η(H)), the density of its clique-
expanded graph. Similarly, subgraph density sgd(F,H) of any set of nodes F ⊆ V (where F
need not be a hyperlink) is defined as sgd(F,H) := gd(η(H)|F ). Note that sgd(F,H) = 1 for all
hyperlinks F ∈ F. We define a slight modification of this notion for temporal and non-temporal
hypergraphs, viz., pre-hyperlink density hdpre(F,H) := sgd(F,H<τ(F )) and punctured hyperlink
density hdpunc(F,H) := sgd(F,H−F ) respectively. The prefixes punctured- and pre- here refer to the
fact that density is calculated on the hypergraph that existed without and before hyperlink F respectively.
A higher pre-hyperlink density for a hyperlink would mean it evolved from near-cliques. Moreover,
a hyperlink F evolving from cliques would have hdpre(F,H) = 1, and those having an underlying
clique structure would have hdpunc(F,H) = 1. In other words, hdpunc is used as an alternative for
hdpre in a non-temporal hypergraph, where the concept of evolution (i.e. order of hyperedge discovery
is irrelevant) does not exist.

Let the clique-fraction cf(H) of hypergraph H be defined as cf(H) :=
|{F ∈ F : hdx(F,H) = 1}|

|F| ,

the fraction of hyperlinks that formed from cliques, where hdx denotes hdpunc and hdpre for temporal
and non-temporal hypergraphs respectively. Since cf(H) is expected to be too low for non-temporal
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datasets, we also define a constant minimum-clique-fraction cfmin and fix it to be cfmin = 0.05,
which is a little more than the maximum hypergraph density among all non-temporal hypergraphs (ref
Table 6.3). Finally, we define cliqueness of a hyperlink F ∈ F as follows:

χ(F,H) := hdx(F,H) ·max(cfmin, cf(H)) (6.1)

where hdx denotes hdpunc and hdpre for temporal and non-temporal hypergraphs respectively. We are
now ready with a well-defined measure – cliqueness – to capture the notion of how dense is the region
from which a given hyperlink is formed. Cliqueness captures both clique-fraction, as well as density,
thereby catering to both clique- as well as near-clique-structure of a given hyperlink.

6.2.2 Stating and Refining the Hypothesis
Hypothesis 1 (CCH: Clique Closure Hypothesis). Given a hypergraph H = (V,F) (or (V,F, τ)),

the null and alternate hypotheses for CCH are defined as follows for a hyperlink F ∈ F:

H′0 : χ(F,H) ≤ E[sgd | H], H′1 : χ(F,H) > E[sgd | H], (6.2)

where E[sgd | H] :=
1

|P(V )| ·
∑

F ′∈P(V )

sgd(F ′,H), the mean subgraph density over all subsets of V .

In order to simplify CCH, and to make it more deterministic, we have the following result in place.

Theorem 6.1. Mean subgraph density of H over all subsets of V is equal to its hypergraph-density. In

other words, E[sgd | H] = hd(H).

Proof. Let X be a random variable denoting hyperlink size. And let E[sgd | H, X = k] be the mean
hyperedge-density of all k-sized hyperedges. We have:

E[sgd | H, X = k] =
1(
n
k

) ∑
F ′∈Pk(V )

 1(
k
2

) ∑
e∈P2(F ′)

1η(F)(e)

 (6.3)

=
k!(n− k)!

n!
· 2!(k − 2)!

k!
·
(
n− 2

k − 2

) ∑
e∈P2(V )

1η(F)(e) (6.4)

=
(n− k)! · 2! · (k − 2)!

n!
· (n− 2)!

(k − 2)!(n− k)!
· |η(F)| (6.5)

=
2 · |η(F)|
n · (n− 1)

= gd(η(H)) = hd(H). (6.6)
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Symbol Definition
F<t Hyperlinks observed before time t
H<t Hypergraph observed before time t
H−F Hypergraph punctured w.r.t. (or without) F
gd(G) Density of graph G

G|F Subgraph of G w.r.t. nodes in F ⊆ V
hd(H) Hypergraph density of H
sgd(F,H) Subgraph density of F ⊆ V w.r.t. H
hdpre(F,H) Pre-hyperlink density of H before F
hdpunc(F,H) Punctured hyperlink density of H w.r.t. F
cf(H) Clique-fraction of H
cfmin Minimum-clique-fraction (a constant)
χ(F,H) Cliqueness of F w.r.t. H
H′0 Null hypothesis for CCH
H′1 Alternate hypothsis for CCH
H0 Null hypothesis for CCH restated
H1 Alternate hypothesis for CCH restated

Table 6.1: Extra notations used in this chapter. Others have already been tabulated in Chapter 2.

Finally, we have:
E[sgd | H] = EX [E[sgd | H, X]]

=
∑
k

E[sgd | H, X = k] · P (X = k)

=
∑
k

hd(H) · P (X = k)

= hd(H) ·
∑
k

P (X = k) = hd(H)

Hence, we could restate the CCH hypothesis as follows:

Hypothesis 2 (CCH restated).

H0 : χ(F,H) ≤ hd(H), H1 : χ(F,H) > hd(H), (6.7)

where hd(H) and χ(F,H) denote density of hypergraph H and cliqueness of hyperlink F therein.

For ease of reference, we compile a list of all notations used hitherto in Table 6.1. We test CCH on
a given temporal hypergraph H using Algorithm 6 and report results in Table 6.1.
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Algorithm 6: An algorithm to test CCH on a temporal hypergraph H = (V,F, τ). Each
hyperlink F = {v1, . . . , v|F |} ∈ F is evaluated w.r.t. connections η(H<τ(F )) in its past based
on how densely nodes v1, . . . , v|F | are connected.

Input: Temporal hypergraph, H = (V,F, τ)
Output: p-value of H0 for hypergraph H

1 F>2 ← {F ∈ F : |F | > 2}
2 dH ←

2 · |η(F)|
|V | · (|V | − 1)

// hypergraph density

3 Nc ← 0 // no. of cliques
4 D ← {} // hyperlink density map
5 for F ∈ F>2 do
6 EF ← {{u, v} | ∀ u, v ∈ f} // projected edges of F
7 t← τ(F )
8 F<t ← τ−1([0, t)) // hyperlinks before F
9 E<t ← η(F<t) // projected edges before F

10 D[F ]← |EF ∩ E<t|
|EF |

// hdpre(F,H)

11 if D[F ] == 1 then // i.e., if EF ∩ E<t is a clique
12 Nc ← Nc + 1

13 cf ← max(cfmin, Nc/|F>2|) // clique-fraction
14 NCCH ← 0 // no. of hyperlinks satisfying CCH
15 for F ∈ F>2 do
16 χF ← D[F ] · cf // cliqueness
17 if χF ≤ dH then
18 NCCH ← NCCH + 1

19 p← NCCH/|F>2|
20 return p

6.2.3 Hypothesis Test
Applying CCH to a non-temporal hypergraph would be futile, since there’s no concept of evolution

per se defined for it. For instance, reactions (hyperlinks) in a metabolite hypergraph [132] cannot be
arranged in a chronological order. However, we attempt to test CCH for such networks using a proxy
mechanism, in that we set sgdx = hdpunc in eq. 6.1 while calculating cliqueness χ(F,H). Making few
changes to lines 7–10 in Algorithm 6, so as to calculate D[F ]← hdpunc(F,H) for each hyperlink F ,
we could find p-values for a non-temporal hypergraph as well. The idea is to validate whether for a
hyperedge, its incident nodes are well-connected even without its presence. Finally, we present the
results in Table 6.3 for both temporal and non-temporal datasets.
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In the literature, Benson et al. [11], who restrict themselves to 3- and 4-sized hyperlinks only, refer
(although implicitly) to a similar phenomenon, wherein they argue that a clique (an open simplex)
eventually forms a hyperlink (a closed simplex). The results of evaluating CCH on various datasets are
tabulated and discussed in Section 6.6.1.

As would be discussed later, temporal hypergraphs strongly satisfy CCH, i.e., it is evident that
most hyperlinks were cliques or near-cliques (densely connected) in the projected graph before they
become hyperlinks.

6.3 C3MM: CCH based Hyperlink Prediction
We exploit this unique characteristic of clique-closure to predict hyperlinks. The approach is similar to
Coordinated Matrix Minimization (CMM) by Zhang et al. [132]. We call our method Clique-Closure

based CMM (C3MM). Let us formulate C3MM here, for which we remain consistent with CMM [132]
in defining concepts and the C3MM objective function; although, some notations would differ from
what we define in Chapter 2, owing to being consistent with CMM.

6.3.1 Theoretical Formulation of C3MM
We know that for a given hypergraph H = (V,F) S ∈ R|V |×|F| is its incidence matrix. Let ∆F ⊆
P(V ) \ F represent the hyperlinks that are missing from (or yet to occur in) H. Clearly, F ∩∆F = ∅.
Let ∆S ∈ R|V |×|∆F| be the incidence matrix corresponding to ∆F. Let H′ := (V,F ] ∆F) be the
completed hypergraph, whose incidence matrix S′ ∈ R|V |×(|F|+|∆F|) could be represented as follows
(here, [A;B] denotes column-wise concatenation of matrices A and B):

S′ := [S; ∆S]. (6.8)

Adjacency matrix for projected graph η(H) is defined as A := η(S) := SST ∈ R|V |×|V |. Similarly,
A′ := S′S′T refers to the adjacency matrix of η(H′), for which we have:

A′ = S′S′T = [S; ∆S][S; ∆S]T = SST + ∆S∆ST = A+ ∆A, (6.9)

where ∆A refers to the links (edges) in adjacency space that get projected by missing hyperlinks ∆F

represented by ∆S.
Let Funiv = {F1, F2, . . . , F|Funiv |} represent the set of universal hyperlinks (or candidate hyper-

links), forming our test set. Of Funiv, ∆F corresponds to true hyperlinks (the positive class); the
remaining hyperlinks, Funiv \ ∆F, called as non-hyperlinks, can be represented by ∆F̂. And let
∆Ŝ ∈ R|V |×|∆F̂| be the corresponding incidence matrix.
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Let U = [u1 u2 · · · u|Funiv |] ∈ R|V |×|Funiv | to be the incidence matrix for the of set of candi-
date hyperlinks Funiv, where ui ∈ R|V | represents the incidence vector of the ith hyperlink Fi ∈
Funiv. Once the adjacency matrix ∆A of the missing links is predicted, the next step would be
to pick those hyperlinks from Funiv, that best explain A and ∆A. For a given diagonal matrix
ΛU = diag(λ1, λ2, . . . , λ|Funiv |) ∈ R|Funiv |×|Funiv |, the product incidence matrix UΛU would “select”
exactly those columns ui from U , for which λi = 1. The corresponding adjacency matrix is then
UΛU (UΛU )T = UΛ2

UU
T = UΛUU

T . Hence ΛU functions as hyperlink selector or predictor.

6.3.2 Redefining the Objective
For the purpose of link prediction, any feasible link prediction method can be used. Here, we use a
Common Neighbor (CN) [78, 66] based link prediction technique. We first complete the adjacency
matrix using the CN score, and then achieve its low rank approximation via Symmetric NMF [59].
The matrixACN = A2 − diag(A2) captures the common neighbor information of the projected graph
η(H) of H. To predict missing links ∆A we first approximate A + ACN with a low-rank matrix
W ∈ R|V |×k, where k < |V |, such thatA+ACN ≈WW T .

min
W∈R|V |×k+

∥∥A+ACN −WW T
∥∥2

F
. (6.10)

The representation capability of W is low and hence such approximation ends up removing noisy
links which might have been introduced due toACN . Thus we define the predicted links as ∆A :=

WW T −A.
Next step is to predict the missing hyperlinks ∆F from the predicted missing links ∆A. Since U

contains missing hyperlinks as well as non-hyperlinks, the diagonal matrix ΛU should be such that the
hyperlinks selected by UΛU correspond to the links in ∆A when they are projected on graph. This
can be obtained by optimizing ΛU w.r.t following objective function:

min
ΛU∈diag

(
{0,1}|Funiv |

)∥∥∆A−UΛUU
T
∥∥2

F
(6.11)

This is where we bring CCH into the picture. According to CCH, links in A also play a major
role in formation of future hyperlinks. Hence, the predicted hyperlinks in ∆F should not only explain
missing links of ∆A but also existing links inA (through clique and near-clique closure). However,
as we already know, links in A are formed by F and hence can always be explained by S. Then
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hyperlinks can be predicted by optimizing ΛU w.r.t following objective function:

min
ΛU∈diag

(
{0,1}|Funiv |

)
ΛS∈diag({0,1}|F|)

∥∥A− SΛSS
T −UΛUU

T
∥∥2

F
+ ‖ΛS‖1. (6.12)

The L1-penalty imposed on ΛS is important to avoid a trivial solution where ΛS = I (the identity
matrix) and ΛU = 0 (the zero matrix).

Satisfying the objective functions specified in eqs. (6.12) and (6.11) leads to a joint optimization
problem for hyperlink prediction, which we formulate next. We note that since the problems in eqs.
(6.11 – 6.12) fall into the integer programming paradigm, and since such problems are NP-complete,
we relax the domains of ΛU and ΛS to the unit interval [0, 1] instead of {0, 1}, just as Zhang et al. [132]
do. Hence our final problem boils down to the following:

min
ΛU∈diag([0,1]|Funiv |)

ΛS∈diag([0,1]|F|)

∥∥A− SΛSS
T −UΛUU

T
∥∥2

F
+
∥∥∆A−UΛUU

T
∥∥2

F
+ ‖ΛS‖1 .

(6.13)

In summary, we have exploited our clique-closure hypothesis by explicitly forcing the objective
function to consider cliques and near-cliques from the projected graph of the observed hyperlinks,
as well as new information ∆A simultaneously, and predict hyperlinks that explain them both.

6.3.3 Alternating Minimization
Finding an optimal solution to the problem (6.13) can be done by minimizing it alternatively – first for
W , and then for ΛS and ΛU .

This leads to an alternating optimization problem, where we first predict missing links with the
help ofW obtained as per eq. (6.10) and then predict missing hyperlinks by solving the optimization
problem in eq. (6.13). At the end of each iteration, we updateA with the new predicted links by adding
UΛUU

T . Overall, C3MM predicts hyperlinks by performing following steps alternatively:
Step 1: For fixed ΛU from Step 2 below (or by fixing it to be a random matrix for the first iteration),
solve forW :

min
W∈[0,∞)|V |×|V |

∥∥A+ACN +UΛUU
T −WW T

∥∥2

F
(6.14)

Step 2: Defining ∆A := WW T −A forW fixed from Step 1 above, find the optimal ΛU according
to eq. (6.13).

Since both Step 1 and Step 2 are convex optimization problems, we solve them by alternatively
minimizing them for matrices ΛU , ΛS andW , and finally use ΛU , that denotes the newly predicted
hyperlinks.

79



6. CLIQUE AND SHUT: A NEW MODEL TO PREDICT HYPEREDGES

6.4 Related Work
The hyperlink prediction problem focuses on predicting unknown/unseen interactions between a set
of nodes, whose analogue in usual networks is the link prediction problem. Here, we given a brief
overview of the related work in both link- as well as hyperlink-prediction.

Although research in hyperlink prediction has been limited, its literature is convincing enough to
vouch for its importance. Ever since the near-seminal works by Agarwal et al. [3] and Zhou et al. [135]
that unite the fields of hypergraphs and machine learning, there has been four major works focusing on
hyperlink prediction [11, 121, 132, 131]. Xu et al. [121] and both works by Zhang et al. [132, 131]
deal with specific domains, viz., email and metabolite networks respectively. Benson et al. [11], on the
other hand, bring a multitude of domains to the table (see Section 6.5 for more details). While Zhang
et al. [132] introduce a matrix completion based solution called Coordinated Matrix Minimization
(CMM) that works well for a [11] restrict the problem to that of predicting the closure of a 3–4 sized
open simplex, which is a problem temporal in nature.

Researchers have previously worked on the task of predicting links in heterogeneous and bipartite
networks as well [60]; however, their relevance to the work in this chapter is limited since hyperlink
prediction parallels neither to link prediction on such networks, nor their one-mode projections.

6.5 Experiments
We test our algorithm (C3MM) on both structural as well as temporal link prediction problems, and
report results on diverse datasets, using a few baselines to compare against. But before that, we test our
hypothesis (CCH) on these datasets, and elucidate that it holds statistically significantly for most of
them. Let us describe the datasets we have used.

6.5.1 Datasets
We have performed our experiments on altogether ten datasets, of which four are temporal hypergraphs
and we use the six non-temporal metabolite hypergraphs from Zhang et al. [132]. We suggest the
reader to refer to Benson et al. [11] for an extensive analysis of the four (and more) temporal datasets,
and to Zhang et al. [132] for the six metabolites datasets. A summary has been tabulated in Table 6.2.

6.5.2 Baselines
Coordinated Matrix Minimization (CMM) [132] as well as baseline algorithms mentioned in their
paper form the baselines for our experiments. More specifically, we use the following methods as
our baselines: Bayesian Sets (BS) [35], Spectral Hypergraph Clustering (SHC) [135], Factorization
Machines (FM) [85], Katz [54, 11], and Hyper Common Neighbors (CN) [132, 66]. For more
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Table 6.2: Temporal and non-temporal datasets that we use in our experiments.

Dataset Temporal? |V | |F|
contact-primary-school Yes 242 11,161
contact-high-school Yes 327 6,700
MAG-Geo Yes 1,876 9,471
tags-math-sx Yes 862 9,098

iJO1366 No 1,805 2,583
iAF1260b No 1,668 2,388
iAF692 No 628 690
iHN637 No 698 785
iIT341 No 485 554
iAB_RBC_283 No 342 469

information we refer to Zhang et al. [132] or the respective references therein. To evaluate the
performance of hyperlink prediction algorithms, we make use of the area under ROC curves (AUC)
metric.

6.5.3 Data Preparation
We use Clique Negative Sampling (CNS) to under-sample the negative class of non-hyperlinks, as
discussed in the previous chapter (Chapter 5). We sample 15 times as many non-hyperlinks as there
are hyperlinks in the unobserved hypergraph for all of the temporal hypergraphs (i.e., ν = 15). For
the non-temporal hypergraphs (i.e., the Metabolites datasets), Zhang et al. [132] already refer to a
manually curated negative class (or non-hyperlinks)1; hence there is no need to generate any negative
samples. We fix the size of latent dimension for symmetric NMF in (6.10) to be k = 30 for the all the
datasets, just as Zhang et al. [132] do as a default choice for CMM.

6.6 Results and Discussion

6.6.1 CCH Hypothesis Testing
We test our hypothesis (CCH) on a total of ten datasets, four of which are temporal, while remaining
are non-temporal (Table 6.3). On temporal datasets, we test CCH using Algorithm 6, whereas for
non-temporal ones the variation as mentioned in Section 6.2 is used. More specifically, for each of
our datasets, we report the values of hd(H), cf(H), and also p-values of H0 (Hypothesis 2) over all
hyperlinks F ∈ F.

The first set of results (first four rows of Table 6.3) show that all temporal hypergraphs satisfy
the hypothesis by a decent margin, in that p < α. One can infer that in these settings, it is highly
required for a group of nodes to have had dense lower-order interactions before the group evolves

1Owing to the knowledge domain experts have about “impossible” metabolic reactions.
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Dataset hd(H) cf(H) p-value Result (α = 0.1)

contact-primary-school 0.285 0.92 0.001 Rejects H0

contact-high-school 0.109 0.91 0.000 Rejects H0

MAG-Geo 0.014 0.27 0.059 Rejects H0

tags-math-sx 0.028 0.52 0.021 Rejects H0

iJO1366 0.009 0.07 0.102 Fails to reject H0

iAF1260b 0.008 0.07 0.033 Rejects H0

iAF692 0.027 0.08 0.571 Fails to reject H0

iHN637 0.028 0.03 0.658 Fails to reject H0

iIT341 0.034 0.04 0.813 Fails to reject H0

iAB_RBC_283 0.030 0.04 0.591 Fails to reject H0

Table 6.3: CCH Test on temporal and non-temporal datasets with significance level α = 0.1. All
temporal datasets reject H0 (i.e., follow CCH) with significance α = 0.1, and all but one (iAF1260b)
non-temporal datasets fail to reject H0 (i.e., don’t follow CCH). We have performed a t-test with 8
degrees of freedom.

into a hyperlink. Also, as the hyperlink size increases, so does its mean pre-hyperedge density. It is
therefore observed that three or four authors can relatively easily group together to collaborate on a
common work, than bigger groups.

The second set of results (bottom six rows of Table 6.3) clearly show that metabolite datasets,
which are non-temporal in nature, show little-to-no support for the hypothesis. Not much could be
commented on the relative comparison between datasets since they are all equally low, wherein cf(H)

lies in the range of 3–8% and p-value much higher as compared to its temporal counterparts.
In summary, temporal datasets satisfy CCH with high confidences, while non-temporal ones

fail miserably. The results we report in the bottom part of Table 6.3 are certain summaries of the static
analysis of metabolite networks, which is not bound to follow a particular pattern, at least not the
pattern we expect it to (namely, CCH).

6.6.2 Hyperlink Prediction
We present the results for hyperlink prediction on the four temporal datasets in Table 6.4. Table 6.4
reports mean AUC scores for C3MM versus CMM and its other baselines.

In all the temporal datasets, C3MM performs better than the other baselines, of which in partic-
ular, CMM (an approach that is similar to C3MM) has much lower AUC scores. This supports the
argument that our hypothesis (CCH) has helped identify hyperlinks that the earlier formulation did
not. Of the datasets, MAG-G and tags-math-sx have the highest scores, since they are bigger datasets
and have formed over a longer time range than the other ones. Of the other baselines, we have BS
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Dataset C3MM CMM BS SHC FM Katz CN

contact-primary-school 0.590 0.455 0.580 0.563 0.497 0.324 0.413
contact-high-school 0.629 0.382 0.624 0.537 0.490 0.308 0.391
MAG-Geo 0.639 0.380 0.637 0.626 0.262 0.274 0.350
tags-math-sx 0.638 0.476 0.590 0.549 0.374 0.374 0.430

Table 6.4: AUC scores of hyperlink prediction on temporal datasets. In all cases, C3MM outperforms
CMM, our main baseline. The role of CCH in helping to identify hyperlinks better is hence evident.

(Bayesian Sets) that has a decent AUC for all datasets, except for tags-math-sx, and SHC seems to
be the third best baseline.

One dataset that has a relatively higher p-value for CCH and despite this fact C3MM performing
well is MAG-Geo, where we see most (73%) of the hyperlinks forming from non-cliques. This is possibly
due to MAG-Geo being a co-authorship network where one would anticipate future collaboration among
authors who have worked together in the past in some form. The higher p-value could be attributed to
the fact that we take the hypergraph snapshot of recent 7 years, which ends up ignoring meaningful
connections of the past.

At the same time, performance of C3MM drops for most of the non-temporal metabolite datasets.
The only dataset which shows better performance for C3MM is iAF1260b while for the rest of the
datasets performance drop is anywhere between 12% to 1%. Also it should be noted that iAF1260b

is the only non-temporal dataset that satisfies CCH hypothesis as seen in Table 6.3 while the other
datasets don’t. This shows that C3MM is a better algorithm for hyperlink prediction when the CCH
hypothesis is strongly supported by a dataset.

6.7 Conclusion
Hyperlink prediction is a difficult task to perform, at least more difficult than what link prediction is.
This is so both due to the number of possible hyperlinks in a given hypergraph (which is exponential in
the number of nodes), as well as lack of multi-way heuristic scores. We set out to improve upon the
current state-of-the-art (CMM) by introducing a clique-closure hypothesis into its objective function,
ultimately forming C3MM. It is clear from the results on the hypothesis tests that we succeed in
validating that it is cliques and co-cliques that close to form hyperlinks, instead of they being formed by
co-cliques or disconnected structures. Embedding the hypothesis into the objective function leads to it
significantly hunting down more hyperlinks which were missed by CMM. Another conclusion we draw
is that hyperlink prediction on temporal and non-temporal datasets works differently, in that the latter
predicts the future, and the former, the missing hyperlinks. While CMM works well on non-temporal
datasets, C3MM better predicts future links.
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Chapter 7

{Parts} > Whole: Sub-Higher Order Models
for Hyperedges

“The basic thesis of Gestalt theory might be formulated thus: there are contexts in which

what is happening in the whole cannot be deduced from the characteristics of the separate

pieces, but conversely; what happens to a part of the whole is, in clearcut cases, determined

by the laws of the inner structure of its whole.” ∼ Max Wertheimer

W
HILE any higher-order relation in a network has to be captured via a hyperedge (or a set of vertices),
its containing vertices need not form its building blocks. In other words, the higher-order (HO)

paradigm – that information flows from vertices to hyperedges – need not be true in general, and there
could be a latent sub-higher-order (SHO) structure that governs the formation of hyperedges. We
propose a novel, SHO-based approach to model the flow of information in a hypergraph by introducing
the concept of “sub-hyperedges” and establish the advantage of using the SHO-paradigm. Since an
ideal implementation is computationally expensive, we provide a greedy heuristic based on a novel
sub-hyperedge scoring metric to reduce complexity. Finally, we use the SHO-based formulations to
design a novel neural network architecture called SHONeN to learn better hyperedge embeddings. The
higher performance of our model on hyperedge prediction over several real-world datasets exemplifies
its superiority over popular baselines for hypergraphs.

7.1 Introduction
We know that a network comprising of higher-order relations cannot be sufficiently captured via
edges (pairwise links), which is why hyperedges (sets of vertices) are used instead. Fig. 7.1 shows
a drug abuse warning network (DAWN) [11] wherein “medications considered harmful when taken
together” are grouped into hyperedges. One can see that the drugs OMEPRAZOLE, VARICELLA VACCINE
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OMEPRAZOLE

1

AMPICILLIN

2

VARICELLA VACCINE

3

ATROPINE-DIFENOXIN

4
DIHYDROERGOTAMINE

5

ASA/BUTALBITAL/CAFFEINE/CODEINE

6
INSULIN

7
KETOROLAC OPHTHALMIC

8

a b c
∅ 1 1 1
{1} 1 0 1...

...
...
...

{8} 0 1 0
{1, 2} 1 0 0...

...
...
...
...

{7, 8} 0 1 0
{1, 2, 3} 1 0 0...

...
...

...
...
...

{6, 7, 8} 0 1 0...
...
...
...

{1, · · · , 8} 0 0 0
Powerset-Incidence

Matrix, P

(a) Hypergraph H and its powerset incidence matrix P (shaded submatrix is S from (c) below)

1 2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
1 0 1 1 1 1 0 1 0
2 1 0 1 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 1 0 0 0 1 0 1 0
5 1 0 0 1 0 0 1 0
6 0 0 0 0 0 0 1 1
7 1 0 0 1 1 1 0 1
8 0 0 0 0 0 1 1 0
Adjacency Matrix, A

(b) Clique expansion η(H) and its adjacency matrix

1 2

3

4

5

6

7

8

a

b

c

a b c
1 1 0 1
2 1 0 0
3 1 0 0
4 0 0 1
5 0 0 1
6 0 1 0
7 0 1 1
8 0 1 0

Incidence

Matrix, S

(c) Star expansion η∗(H) and its incidence matrix

Figure 7.1: A hypergraph sampled from the Drug Abuse Warning Network (DAWN) dataset [11].
(a) A hypergraph with eight vertices denoting medical drugs, and three hyperedges corresponding to
drugs that react adversely when consumed together. Also, on the right, we have its powerset-incidence
matrix P (see eq. (7.2)) that introduces the concept of sub-hyperedges (one per row). Also, the shaded
submatrix corresponds to the usual incidence matrix S. (b) Its clique expansion [3], joining two nodes
that co-appear in a hyperedge at least once. This forms the 2-order (2O) paradigm: nodes communicate
with each other pair-wise, and result in the adjacency matrix A. (c) Its star expansion [3], reifying
each higher-order relation via a superficial node (black squares � labeled a, b, and c); this corresponds
to a higher-order (HO) paradigm: nodes communicate to (reified) hyperedges, and vice versa, resulting
in the incidence matrix S.

and AMPICILLIN are advised not to be co-taken (a fact depicted by the maroon triplet in Fig. 7.1a).
However no such advise has been given against taking OMEPRAZOLE and AMPICILLIN together, a fact
that gets misrepresented by its induced graph (depicted in Fig. 7.1b). Had it been for mere graphs, we
would have endured with such incorrect drug-abuse warnings. This shows that pair-wise induction of
drug-interactions lose context and hence their higher-order ought be retained.

For a hypergraph H = (V,F), it is commonly assumed that the existence of a k-sized hyperedge
F := {v1, . . . , vk} ∈ F depends either on pairwise links over F ’s vertices (e.g., clique-expansion [3],
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as depicted in Fig. 7.1b), or on its individual nodes v1, . . . , vk along with a dummy node u (star-

expansion [3], as per Fig. 7.1c).1 The former corresponds to a 2-order (2O) paradigm involving
edges, and the latter assumes a reification (introduction of a superficial node) of F , a higher-order
(HO) paradigm. While multiple hypergraph models rely upon clique-expansion [135, 55], the best
performance on standard hypergraph-oriented tasks has been reported by Hyper-SAGNN [133], a
vertex-vertex self-attention based neural network. Moreover, typical random walks [135] on hyper-
graphs alternate between vertices and hyperedges, supporting the HO (or star-expansion) assumption.
Hence, all hypergraph-based models essentially assume that flow of information is from nodes to
hyperedges and vice-versa.

We hypothesize that neither the 2O, nor the HO paradigm fully captures the formation of hyper-
edges. Instead, we propose a sub-higher-order (SHO) paradigm that is responsible for the evolution
of hyperedges. More specifically, nodes do not directly contribute in the formation of HO hyperedges,
but do so via sub-hyperedges, which are themselves smaller sets of nodes. To illustrate, in a co-
authorship network (one where all collaborating authors form a hyperedge), the higher-order paradigm
supports the view that authors (nodes) contribute individually to form author-groups (hyperedges). But
it seems logical to assume that it is not just the individual contributions of authors, but those of even
smaller author-groups (sub-hyperedges) that ultimately results in the formation of a hyperedge. This
forms our SHO paradigm.

The state-of-the-art techniques for hyperedge embedding and prediction employ deep models for
the job [133, 31, 7, 82, 122]. In this chapter, we too design a neural network called Sub-Higher-Order
Neural Network (SHONeN) exploiting the SHO argument and show improved performances over
baselines for hyperedge prediction. We also analyze the SHO-effect on real-world hypergraphs and
show that its contribution is non-trivial. Moreover, since we deal with subsets of hyperedges, the search
for the best possible SHO structure is super-exponential (22k for a hyperedge of size k), and hence
we first define a scoring mechanism called contextual standalone hyperdegree (CoSH) and use it to
provide a computation-friendly sub-optimal heuristic for hyperedge prediction.

In Section 7.2, we formalize the SHO notion in hypergraphs and devise a greedy heuristic for
the same. Then we describe the SHONeN architecture for hyperedge prediction in Section 7.3. We
conduct a number of experiments on a few real-world datasets in Section 7.5 and discuss the results in
Section 7.6, before we conclude in Section 7.7.

7.1.1 Key Contributions
1. We establish a novel sub-higher-order (SHO) paradigm for hypergraphs which could model

them better.
1More details about hypergraph-to-graph expansions could be obtained from Chapter 2, Section 2.1.

87



7. {PARTS} > WHOLE: SUB-HIGHER ORDER MODELS FOR HYPEREDGES

2. We design a novel neural network architecture called SHONeN for hyperedge prediction that is
able to perform significantly better than its baselines on real-world hypergraphs.

3. We define contextual standalone hyperdegree (CoSH), a metric that scores node-groups ac-
cording to their ability to stand without their incident hyperedges. We further use it to define a
sub-optimal heuristic for better scalability of SHONeNs.

4. We provide key insights into the working of the SHO-paradigm by performing a qualitative
analysis over real-world hypergraphs.

7.2 The SHO-structure for Hypergraphs
Given a hypergraph H = (V,F) where V := {v1, . . . , vn} and F := {F1, . . . , Fm} ⊆ 2V , it is known
that it could be uniquely represented (up to a permutation of its columns) using its incidence matrix

S ∈ Rn×m (defined in Chapter 2, Section 2.1), which essentially relates nodes to hyperedges. We first
discuss the higher-order paradigm that is based on the incidence matrix.

7.2.1 The higher-order (HO) paradigm
A higher-order (HO) structure assumes a lossless “star” expansion [3] (see Figure 7.1c) of H into
η∗(H) := (V ∗,E∗) defined as in Chapter 2. Since η∗(H) is a bipartite graph, each vertex v ∈ V is
expected to pass on any information it has to hyperedges Γ̃(v) incident on v (hyperneighbors); further,
each hyperedge F ∈ F does the same to each containing vertex v ∈ F . In fact, S also represents the
biadjacency matrix of graph η∗(H). From the point-of-view of hyperedge prediction, wherein one has
to predict whether an arbitrary group of nodes form a hyperedge or not, S could be looked at as an
inverted data matrix of features (vertices) vs. patterns (hyperedges). Hence, the incidence matrix S of
a hypergraph gives its HO representation, i.e., relation between its vertices and hyperedges. We now
move towards establishing our sub-higher-order (SHO) formulation.

7.2.2 The sub-higher-order (SHO) paradigm
For the SHO paradigm for a hypergraph H = (V,F), we would need to deal with the powerset P(V )

of vertices V , that represents the set of all possible sub-hyperedges in H. For reasons that will be clear
soon, let us spend some effort arranging PV in a particular fixed order, numbered from 1 to 2n, for
ease of reference. Please refer to the Shortlex order <slex defined in Chapter 2, Definition 2.1. It could
be applied to the powerset P(V ) of V and any of its powerset’s subsets. More particularly, we denote
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P(V ) as an ordered set (F ′1, . . . , F
′
2n), arranged as:

P(V ) = ( ∅︸︷︷︸
F ′1

, {v1}, . . . , {vn}︸ ︷︷ ︸
F ′i : i=2,...,n+1

, {v1, v2}, . . . , {vn−1, vn}︸ ︷︷ ︸
F ′i : i=n+2,...,(n2)+n+1

, · · · , V︸︷︷︸
F ′2n

), (7.1)

and the same can be inherited for any subset of P(V ) (esp., for the set of hyperedges F ⊆ P(V )).
Some more remarks on the shortlex ordering for the powerset of V follow.

Remarks 7.1. The first element F ′1 of P(V ) is ∅. The next n elements F ′2, . . . , F
′
n+1 are n singletons

{v1}, . . . , {vn} respectively. Then for n + 2 ≤ i ≤
(
n
2

)
+ n + 1, we have

(
n
2

)
doubletons sorted in

lexicographic order. This pattern continues and finally, we have the last element F ′2n of the ordering to

be the whole set V .

For a hyperedge F ∈ F, we assume sub-hyperedges (F ′ ∈ P(F )), and not vertices (v ∈ F ), to be
its building blocks. Hence, we see a need to define a powerset-incidence matrix P ∈ R2n×m for a
hypergraph as follows:

Pij := 1P(Fj)(F
′
i ) :=

{
1, if F ′i ⊆ Fj,

0, if F ′i 6⊆ Fj.
(7.2)

The ith row Pi of P refers to the ith sub-hyperedge F ′i as ordered by <slex (see Remarks 7.1). And the
j th column denotes the j th hyperedge Fj , again, ordered by <slex. Powerset-incidence matrix for the
example hypergraph given in Figure 7.1 has been shown in Figure 7.1a (the matrix on the left). Taking
Figure 7.1a as a typical example, let us discuss further about P in general.

Remarks 7.2. The first row P1 of P is an m-dimensional all-one vector 1 :=
[
1 1 · · · 1

]T
since

P1j := 1P(Fj)(∅) = 1 ∀j. For a given hypergraph H = (V,F), we have two matrices: the usual n×m
incidence matrix S and a 2n ×m powerset-incidence matrix P (equation (7.2)). While S gives an

n-dimensional representation to each hyperedge, P gives a 2n-dimensional one. The incidence matrix

S connects vertices to hyperedges, and the powerset-incidence matrix P connects sub-hyperedges to

hyperedges. More formally, the ith row Si of S corresponds to the ith vertex vi ∈ V , and the ith row Pi
of P , to the ith sub-hyperedge F ′i ∈ P(V ). Moreover, rows of P would be ordered by <slex. On one

hand, for the incidence matrix S, we have only those columns as “one”, that correspond to hyperedges

incident on a given vertex (row). While on the other, for the powerset-incidence matrix P , we have

“ones” in those columns that correspond to hyperedges that are “supersets” of a given sub-hyperedge

(row).

Essentially, we posit that a hyperedge F ∈ F does not receive information directly from its contain-
ing vertices v ∈ F , but from its sub-hyperedges F ′ ⊆ F . We now make a rank-based statement and
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argue that it is due to this that the SHO-representation (as per P ) is more informative than the HO-one
(as per S). But before that, a lemma is in place, that would be useful later.

Lemma 7.1. S is an n×m submatrix of P .

Proof. By definition of P from eq. (7.2), each row of P corresponds to a sub-hyperedge from P(V ),
and so, a submatrix corresponding to all the n singleton sub-hyperedges {v1}, . . . , {vn} ∈ P(V ) in P
exactly matches S. To see this, we have from Remarks 7.1 that rows “2 to n+ 1” in P correspond to
singleton sub-hyperedges. Take the ith row Si of S whose jth entry is as follows:

Sij := 1Fj(vi) = 1P(Fj) ({vi}) (7.3)

= 1P(Fj)

(
F ′i+1

)
(∵ Fi+1 denotes singleton {vi}) (7.4)

= Pi+1,j (from eq. (7.2)). (7.5)

Since the choice of j was arbitrary, we have Sij = Pi+1,j for each j, 1 ≤ j ≤ m. And as per another
remark from Remarks 7.1, we know that the first row of P is P1 = 1, an all-one vector. Hence, we
have

P =


P T

1[
P2 · · · Pn+1

]T[
Pn+2 · · · P2n

]T
 =


P T

1[
S1 · · · Sn

]T[
Pn+2 · · · P2n

]T


=
[
P1 ST QT

]T
(7.6)

withQ :=
[
Pn+2 · · · P2n

]T
.

Corollary 7.1 (of Lemma 7.1). The rank of P is greater than or equal to the rank of S.

The proof of the foregoing corollary is straightforward. Intuitively, we have that since P has
a higher rank than S, it spans a larger vector space, and gets a chance to explain the formation of
hyperedges better than S. To further see this, let us consider the full-hypergraph on a fixed set V of
vertices, defined as Hfull := (V,Ffull := P(V )), i.e., a hypergraph containing all possible hyperedges.1

Also let us define the incidence and powerset-incidence matrices Sfull ∈ Rn×2n andPfull ∈ R2n×2n for
Hfull, with both rows (sub-hyperedges) and columns (hyperedges) ordered as per <slex. An illustration
of the structure of Pfull and Sfull has been given in Figure 7.2. We now state an important lemma
regarding the ranks of these matrices, as follows:

1Empty hyperedge is considered purely for theoretical interest, in practice, it is insignificant.
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Figure 7.2: Snapshot of the powerset-incidence matrix Pfull ∈ R28×28 and the incidence matrix
Sfull ∈ R8×28 (shaded) for the full hypergraph Hfull with V = {1, . . . , 8}.

Lemma 7.2. Sfull and Pfull are full-rank matrices, with ranks ρ(Sfull) = n and ρ(Pfull) = 2n

respectively.

Proof. Let us first argue for Sfull. Since its columns are arranged as per <slex (Chapter 2, Defini-
tion 2.1), we could ignore the first column that corresponds to the empty set (an all-one vector 1). The
next n columns (i.e., the 2nd to the (n + 1)th column) correspond to singletons, thereby forming an
n× n identity matrix In. Thus, Sfull is of the form:

Sfull =
[
0 In S′

]
(7.7)

for some appropriate matrix S′. Since the identity matrix In is a submatrix of Sfull, we have
ρ(Sfull) = n.

Coming to the square matrix Pfull, we have the first row and column concerning the empty-set,
the next n rows and columns denoting interaction among singletons, the next

(
n
2

)
for double-tons,

and so on. In other words, if P (k,l) ∈ R(nk)×(nl) is the
(
n
k

)
×
(
n
l

)
submatrix of P denoting powerset-

incidence of k-sized sub-hyperedges in 2V with l-sized hyperedges in Ffull, we could rewrite Pfull as

Pfull =

[
1 1T

0 P ∗

]
, where P ∗ can be expanded block-by-block as:

P ∗ :=


P (1,1) . . . P (1,n)

... . . . ...
P (n,1) . . . P (n,n)

 =


I(n1)

. . . P (1,n)

... . . . ...
0 · · · 1

 , (7.8)

which is a full-rank matrix (of rank 2n−1) since it is upper-triangular with blocks of incidence matrices
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I(nk)
as its diagonals. And since ρ(Pfull) = ρ(P ∗) + 1, we have ρ(Pfull) = 2n.

Although Hfull rarely occurs in practice, it successfully illustrates the benefit of using P instead of
S. To model the information flow between the 2n hyperedges in Hfull, while the incidence matrix S
uses n vertices, the powerset-incidence matrix P resorts to using 2n sub-hyperedges. As a result, given
the task to span a 2n-dimensional vector space R2n , S fails miserably since its row-vectors S1, . . . ,Sn

merely span an exponentially lower (n) dimensional subspace, viz., row-space R(S) ⊆ R2n . On the
other hand, rows P1, . . . ,P2n of P , successfully span R2n since they form a basis for it (owing to
it being full-rank). Finally, we could move towards the generic case, where we have the number of
hyperedges to be m ≤ 2n. Before proceeding, we make some more important remarks as follows.

Remarks 7.3. The column-sets of the incidence matrix S and the powerset-incidence matrix P of a

given hypergraph H = (V,F) are subsets of the column-sets of Sfull and Pfull respectively.

These remarks give rise to an important lemma:

Lemma 7.3. The powerset-incidence matrix P of any hypergraph is a full-rank matrix, with rank

ρ(P ) = m.

Proof. The proof of this is simple: Going by Remarks 7.3, since P is obtained merely by selecting m

columns from Pfull (a full-rank matrix itself) – each per hyperedge – its rank is exactly equal to the
number of columns thus extracted, i.e., m.

Thus, we could repeat the argument made above for a generic hypergraph as well. To represent
a hypergraph in the HO-paradigm, we use an n rank matrix S, and in the SHO-paradigm, we use
a m rank matrix P . In general, we speculate that since P already captures the flow of information
from vertices to hyperedges (via singletons), it also considers other SHO structures from a hyperedge.
However, we conjecture that P would capture the HO structure of H better than what S does because
of its higher rank. Moreover, the experiments we perform prove that P significantly improves the
performance of hyperedge prediction.

7.2.3 A Greedy Heuristic: T2C2
However, one major concern in implementing the P -based SHO-paradigm is its computational
complexity. To reduce the complexity of implementing the SHO-based hyperedge representation by
a substantial amount, we develop a heuristic for the same. Such a heuristic should give us a subset
of P(V ) that could be used for the SHO-based hyperedge representation. Essentially, this would also
mean taking a sub-matrix out of the rows of P . Lest any vertex of a hyperedge be left-out in our
heuristic, let us define a cover of hyperedge F ∈ F to be a set CF of its sub-hyperedges whose union
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Algorithm 7: An algorithm to collect sub-hyperedges based on the Thresholded Top-CoSH
Cover (T2C2) Heuristic. It first computes Contextual Standalone Hyperdegree (CoSH) scores
for all sub-hyperedges of a hyperedge, sorts them, and then picks sub-hyperedges sequentially
until the constraints in Definition 7.2 are satisfied.

Input: Set of hyperedges F, A hyperedge F , A threshold t
Output: T2C2 based sub-hyperedges

1 for F ′ ⊆ F do
2 Γ̃F ′ ← {F ′′ ∈ F | F ′ ⊆ F ′′}
3 Γ̃F\F ′ ←

⋃
u∈F\F ′

{F ′′ ∈ F | F ′ ∪ {u} ⊆ F ′′}

4 ψF (F ′)←
∣∣ΓF ′ \ ΓF\F ′

∣∣
5 ψF ← L1NORMALIZE(ψF )
6 F′F ← SORTBYVALUE(ψF )
7 T2C2(F )← {}
8 C(F )← {}
9 CCoSH(F )← 0

10 for i← 1 to 2|F | do
11 T2C2(F )← T2C2(F ) ∪ {F′F [i]}
12 C(F )← C(F ) ∪ F′F [i]
13 CCoSH(F ) = CCoSH(F ) + ψF (F′F [i])
14 if C(F ) \ F = ∅ and CCoSH(F ) ≥ t then
15 break

16 return T2C2(F )

equals F . In other words, a cover of F is nothing but its soft-partition. A heuristic according to which
the set of sub-hyperedges of every hyperedge forms its cover, is called a cover-compliant heuristic. We
know at least two heuristics that are cover-compliant:

Lemma 7.4. Each of the S-based and P -based heuristics are cover-compliant.

Proof. Rows of S consider singletons {v} ⊆ F as sub-hyperedges of F . And since
⋃
v∈F{v} = F ,

an S-based heuristic is cover-compliant. Rows of P consider all subsets F ′ ⊆ F as sub-hyperedges of
F . And since

⋃
F ′⊆F F

′ = F , a P -based heuristic is cover-compliant.

We now define a heuristic that we show to work better than a singleton-based HO-heuristic. Our
major goal is to come up with a logical means to select a few sub-hyperedges that improve the

representability of H by incorporating its SHO-structure; not-to-mention, it should be cover-compliant.
But before defining such a heuristic, we define a score for each sub-hyperedge of a hyperedge as
follows. Then, for each hyperedge, we will use this score to greedily pick sub-hyperedges until it
covers the hyperedge.
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Definition 7.1 (Contextual standalone hyperdegree). Given a hypergraph H = (V,F), we define the

contextual standalone hyperdegree (CoSH) ψF (F ′) of a sub-hyperedge F ′ ⊆ F w.r.t. hyperedge F ∈
F as ψF (F ′) := |ΨF (F ′)|, where ΨF (F ′) represents the contextual standalone hyperneighborhood
of sub-hyperedge F ′ w.r.t. hyperedge F , defined as:

ΨF (F ′) := Γ̃(F ′) \
⋃

u∈F\F ′
Γ̃(u),

where Γ̃(v) := {F ∈ F | v ∈ F}, and Γ̃(F ′) := {F ∈ F | F ′ ⊆ F}, the hyperneighbors of a vertex v

and a sub-hyperedge F ′ respectively.

For a given hyperedge F , this score assigns a measure of “standalone-ability” to each of its sub-
hyperedges F ′. By standalone-ability, we mean the ability of the sub-hyperedge F ′ to sustain without
any other nodes from F . Please note that for the same sub-hyperedge F ′, its standalone-ability varies
from hyperedge to hyperedge; hence the term “contextual” is used. Using the CoSH scores defined as
above, we define our heuristic that successfully represents a hyperedge in the sub-higher order domain
as follows:

Definition 7.2 (Thresholded Top-CoSH Cover (T2C2)). For a hyperedge F ∈ F of size s = |F |, if

P(V ) := (F ′1, . . . , F
′
2s), sorted by CoSH scores (ψF (F ′1) ≥ · · · ≥ ψF (F ′2s)), consider T2C2(F ) :=

{F ′1, . . ., F ′k} to be the t-threshold top-CoSH heuristic set of sub-hyperedges if:

1.
k⋃
i=1

F ′i = F and

(
k∑
i=1

ψF (F ′i )

)
≥
(
t ·

2s∑
i=1

ψF (F ′i )

)
,

2.
k−1⋃
i=1

F ′i ( F or

(
k−1∑
i=1

ψF (F ′i )

)
<

(
t ·

2s∑
i=1

ψF (F ′i )

)
.

Algorithm 7 computes the T2C2 sub-hyperedges for each hyperedge in F. Once CoSH scores
ψF (·) are available for all possible subsets of a hyperedge, the next step is to figure out a soft partition,
T2C2(F ) of F . First, the scores ψF (·) are normalized and then sub-hyperedges are sorted according to
their CoSH score. Next, we keep adding them to T2C2(F ) one by one until we have covered all nodes
of the hyperedge and their cumulative CoSH score crosses a specified threshold. In addition to this, we
also propose another heuristic, so as to remain consistent with the literature that deals merely with
singletons. The idea is to simply, for each hyperedge F , forcefully include its singletons once a cover
has been found via T2C2(F ). We call this heuristic T2C2S:

Definition 7.3 (T2C2S: T2C2+Singleton). For a hyperedge F ∈ F, define T2C2S(F ) := T2C2(F ) ∪
{{v} | v ∈ F}.
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Basically, the sub-hyperedges that have a high contextual standalone hyperdegree get selected.
More clearly, if there is a sub-hyperedge F ′ that occurs with high frequency even without its superset
hyperedge F ⊃ F ′ (i.e., F ′ is also a sub-hyperedge of hyperedges other than F ), we say it has a high
“standalone-ability” (since it does not need the hyperedge F to stand on its own). Such sub-hyperedges
would be ranked higher than others for every hyperedge, and the T2C2 heuristic would thus select them
first. The T2C2S heuristic includes all singletons explicitly.

7.2.4 Complexity of the SHO-paradigm
If for a given hypergraph H = (V,F), we define smax := maxF∈F |F |, the maximum hyperedge size,
we need in the HO-paradigm, a storage of O(n ·m) for S, which, in the worst case, is O(n · 2n). On the
other hand, in the SHO-paradigm, we need a storage of O(2n ·m), which, in the worst case, becomes
O(2n · 2n) = O(4n). However, exhaustively searching through the space of all subsets of the set of
all sub-hyperedges to find an optimal set thereof is much more computationally infeasible since the
search-space itself is super-exponential O(m · 22smax ). Hence, we proposed simple greedy heuristics
T2C2 and T2C2S to obtain a subset of all sub-hyperedges which can then be used for the information
propagation. A nice property of the greedy heuristic is that the number of sub-hyperedges obtained is
of the order of hyperedge size, and hence time-complexity reduces from O(m · 2smax) to O(m · smax),
given that we have the CoSH scores, which is a pre-processing step performed only once.

7.3 The SHONeN Architecture
Our ultimate goal is to design a message-passing based neural architecture for hypergraphs, to model
the flow of information through sub-hyperedges of a hyperedge. Message-passing based neural
architectures have been popular in networks, wherein information flows between neighboring nodes.
The key idea of the proposed model is to capture the information flow from nodes to hyperedges
through sub-hyperedges; we have termed this the sub-higher-order (SHO) paradigm.

The first step is to obtain the CoSH scores ψF (·) for all sub-hyperedges of a hyperedge F . Once
we have them, we use the simple greedy heuristic called T2C2 (or T2C2S), which has been explained
in Section 7.2.3, to obtain sub-hyperedges T2C2(F ) ⊆ 2F (for each hyperedge F ∈ F). These
sub-hyperedges are then used to model the flow of information from nodes to a hyperedge in a neural
network. Specifically, information at node-level is passed to the sub-hyperedges and then to hyperedges.
Then, information from a hyperedge is distributed back to nodes and this goes on and on over multiple
layers.
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Figure 7.3: Information flow in a single layer of SHONeN. Sub-hyperedges T2C2(F ) = {F ′1, . . . , F ′4}
of a hyperedge F = {v1, . . . , v7} are shown in different lightly shaded regions as subsets {v1, v3, v4},
{v1, v2, v3}, {v4, v5}, and {v2, v3, v6, v7} of F . First, the embedding of a sub-hyperedge F ′ ⊆ F (i.e.,
∈ T2C2(F )) is obtained from that of its containing nodes v as specified in eq. (7.9). This is shown as
arrows joining the 7 vertices to the 4 sub-hyperedges. These embeddings are then combined using
a Multi-head Attention layer as per eq. (7.10) to form a single embedding for the hyperedge F (the
four connections from F ′1, . . . , F

′
4 to F ), which is distributed back to te nodes using eq. (7.11). The

information flows in subsequent layers in the same manner and eventually, the final embedding of a
hyperedge is obtained by concatenating its embeddings from all layers as shown in eq. (7.12).
Note: This only represents one layer of SHONeN. The actual architecture is similar to Hyper-SAGNN
(Figure 7.4) where instead of the attention blocks, we use SHONeN blocks.

7.3.1 Information Flow
The information on nodes, sub-hyperedges and hyperedges is captured in the form of a latent represen-
tation, as is usually the case with deep learning models. There are three key aspects to the SHONeN
architecture: (i) accumulating node information into sub-hyperedges (ii) accumulating sub-hyperedge
information into a hyperedge (iii) distributing hyperedge information back to nodes. Let us discuss
them one by one, and follow Fig. 7.3 for reference.

7.3.1.1 Vertex to sub-hyperedge

Let X(l)
v ∈ Rd(l) be the d(l)-dimensional embedding of a node v at the lth hidden layer. Then the

embedding h(l)
F ′ ∈ Rd(l) of a sub-hyperedge F ′ of F (F ′ ⊆ F ) would be captured as, simply:

h
(l)
F ′ =

1

|F ′|
∑
v∈F ′

X(l)
v . (7.9)
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Figure 7.4: The architecture of HyperSAGNN [133], whose self-attention layer (Multi-head Attention)
could be replaced by the one shown in Figure 7.3 to give the whole SHONeN architecture.

7.3.1.2 Sub-hyperedge to hyperedge

The next step is to generate the embedding of hyperedge F from those of its sub-hyperedges in
T2C2(F ). We use self-attention between sub-hyperedges to generate a new “attended” embedding
of sub-hyperedges which are then pooled using the average operation (AVGPOOL) to generate an
embedding of the hyperedge. The self-attention we use is the same as multi-head self-attention
(MHATT) described by Vaswani et al. [109]. If h(l)

F ∈ Rd(l) denotes the embedding of hyperedge F at
layer l, we have:

h
(l)
F := AVGPOOL

(
MHATT

({
h

(l)
F ′ | F ′ ∈ T2C2(F )

}))
(7.10)

7.3.1.3 Hyperedge to Vertex

Once we have with us the l-level embedding h(l)
F ∈ Rd(l) of each hyperedge F ∈ F, we generate the

(next-level) embeddingX(l+1)
v of nodes from them as follows:

X(l+1)
v :=

1

|Γ̃(v)|
∑

F∈Γ̃(v)

ReLU
(
W (l)h

(l)
F

)
, (7.11)

where Γ̃(v) := {F ∈ F | v ∈ F} andW (l) ∈ Rd(l+1)×d(l).
Forward propagation in a single SHONeN layer comprises of the three steps described above

(equations (7.9–7.11)). The final embedding of a hyperedge F is obtained by concatenating its
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embeddings from all layers and passing it through a feed-forward network, which is shown as follows:

ZF := FFN
(
h

(1)
F ‖ h

(2)
F ‖ ... ‖ h

(l)
F

)
. (7.12)

We use a single layer of SHONeN which generates node embeddingsX(1)
v and hyperedge embed-

dings h(1)
F as outputs as shown above, for each v ∈ V and F ∈ F. The sub-hyperedge embeddings h(2)

F ′

of the second layer as per eq. (7.9), which are then simply averaged (as opposed to applying MHATT)
to generate the second layer hyperedge embedding h(2)

F .

7.3.2 Relation with Hypergraph NNs
It could be further argued that the message-passing flow modeled by standard hypergraph-based neural
networks such as HGNN [31] or HyperGAT [7] form a special case of SHONeNs. To show this, assume
that sub-hyperedges of a hyperedge F consist merely of singleton nodes SING(F ) := {{v} | v ∈ F}.
In eq. (7.10), if we replace the information flow from “sub-hyperedges to hyperedge” by a simple
AVGPOOL pooling and remove MHATT attention, then we would have:

h
(l)
F = AVGPOOL

({
h(l)
v | v ∈ F

})
=

1

|F |
∑
v∈F

h(l)
v . (7.13)

This, in the light of eq. (7.11), generates the vertex embeddings in the next layer (X(l+1) ∈
Rn×d(l+1)) to be as follows:

X(l+1) = ReLU
(
D−1

v SD
−1
e S

TX(l)W (l)
)
, (7.14)

whereS ∈ Rn×m is the incidence matrix,Dv = diag(COLSUM(S))∈Rn×n andDe = diag(ROWSUM(S))

∈ Rm×m are normalizing diagonal matrices, X(l) ∈ Rn×d(l) are the lth layer embeddings, and
W (l) ∈ Rd(l)×d(l+1) are model parameters. The neural model in eq. (7.14) is precisely the row-
normalized hypergraph convolution network for unweighted hypergraphs proposed by Bai et al. [7].
Moreover, it should be noted that while HGNN [31] uses a symmetrically normalized hypergraph
Laplacian, eq. (7.14) models the spectral convolution on hypergraphs through an asymmetrically
normalized hypergraph Laplacian. The foregoing analysis shows that our approach for modelling
information via the sub-higher-order (SHO) paradigm is indeed much more generic compared to those
in the literature. In fact, a singleton-based information flow establishes an equivalence between the
two.

SHONeN is a generalizable architecture, in that its pairwise variant is in line with Hypergraph NNs,
which are themselves generalizable to Graph NNs for graphs. Moreover, for size-2 hyperedges (edges),
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there would be a single sub-hyperedge: the edge itself. So while prediction of hyperedges depends on
their relative frequency, what sub-hyperedges provide is a new set of features for the model to learn
well.

7.4 Related Work
Quite a few models for hypergraphs have been proposed in the literature, and all of them consider
either the 2-order clique-expansion approach, or the higher-order one [3, 135]. The almost-seminal
works by Agarwal et al. [3] and Zhou et al. [135] sparked interest in the intersection of machine
learning and hypergraphs, and simple models for hypergraphs were proposed [121, 132, 11]. The
sudden surge in neural approaches to model networks [38, 55, 110, 16] has paved way for more
deep hypergraph models to be formulated. Of them, the popular ones are: Deep Hyperedges [82],
DHNE [107], HyperGCN [122], Hyperedge2vec [93], Hyper-SAGNN [133], etc. While some deal
with uniform hypergraphs, others [123, 7] turn out to be trivial extensions of graph convolution [55].

Hyper-SAGNN by Zhang et al. [133] is a novel application of self-attention to hyperedges, but
is limited to connecting pairs of nodes in a hyperedge. Nevertheless, their embeddings have been
shown to give the best performance for hyperedge prediction and serves as the current state-of-the-art
for the job. Hence, while they assume the flow of information from nodes to hyperedges and work
in the higher-order (HO) paradigm, we are the first ones to introduce the sub-higher-order (SHO)
information flow. However, similar structures called weighted simplicial complexes have been used in
the past to model their recurrence in an evolving simplicial hypergraph [92].

7.5 Experiments
We demonstrate the SHO-based paradigm by performing hyperedge prediction on various real-world
hypergraphs, as described in Table 7.1.

Table 7.1: Datasets used in this chapter.

Dataset |V | |F|
email-Enron 1,512 143
contact-high-school 7,818 327
contact-primary-school 12,704 242
MAG-Geo 10,708 1,371
tags-math-sx 9,833 862
coauth-DBLP 8,529 5,541
NDC-substances 9,106 5,043
DAWN 7,906 2,558
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7.5.1 Datasets and Preprocessing
We use a bunch of homogeneous hypergraphs from Benson et al. [11] that belong to various do-
mains: email (email-Enron), contact (contact-high-school, contact-primary-school), co-

authorship (MAG-Geo, coauth-DBLP), tags (tags-math-sx), and medical drugs (NDC-substances,
DAWN).

As far as processing the datasets is concerned, NDC-substances is a huge dataset with many
hyperedges having sizes more than 12; so we restrict the size of largest hyperedge to 15, and the
maximum sub-hyperedge size to be 8. Moreover, we use the same core-based technique as used by
Liben-Nowell et al. [66] to pre-process co-authorship networks such as MAG-Geo and coauth-DBLP.
Also, we only consider hyperedges with multiplicity ≥ 3 for the DAWN dataset (so as to trigger an
abuse warning only after 3 or more reaction instances to the same drug combination).

Since we aim to solve a classification problem, negative class subsampling (i.e., sampling non-
hyperedges) becomes an important step, since the set of “all” possible non-hyperedges is O(2|V |) – a
number too huge for our algorithms to run. We use Motif Negative Sampling (MNS) [81] (as described
in Chapter 5, Section 5.2.4), wherein to generate the negative class, those connected components from
the clique-expansion of the hypergraph are sampled, which are not observed as hyperedges. This
ensures a fair equivalence between both the classes.

The negative-to-positive class ratio is fixed to be 5:1, and a temporal split of 80:20 is used to split
data into train and test hyperedges. Further, we use a 75:25 observed-unobserved split of the train
hyperedges; the model is trained on predicting unobserved train hyperedges using information from
observed train ones. And it is finally evaluated by predicting test hyperedges. Also, as is customary in
imbalanced classification, we use Area Under ROC Curve (AUC) to measure hyperedge prediction
performances.

7.5.2 Baselines
We compare the performance of SHONeNs (based on two heuristics: T2C2 and T2C2S) against three
other baselines, two of which are higher-order (HO) oriented and the third uses clique-expansion of
hypergraphs (a 2O paradigm). They are described as follows:

1. HGNN: HGNN [31] uses spectral convolution on a hypergraph and generates latent embeddings
for its nodes. We use average pooling along with multi-head self-attention (see eq. (7.10)).

2. node2vec-SAG: node2vec [38] uses clique-expansion of hypergraphs, followed by random
walks that generate node embeddings. Again, average-pooling is used along with multi-head
self-attention (see eq. (7.10)).
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Table 7.2: Hyperedge prediction performance scores (% AUC). SHONeN-T2C2 and SHONeN-T2C2S
are the models proposed in Section 7.3, and use sub-hyperedges generated by the T2C2 and the T2C2S
heuristics as per Definitions (7.2) and (7.3) respectively. It is clear that for most datasets, one of
SHONeN-T2C2 and SHONeN-T2C2S performs the best.

Dataset SHONeN-T2C2 SHONeN-T2C2S HGNN Node2Vec HyperSAGNN

email-Enron 80.36 ± 1.86 80.53 ± 1.54 77.60 ± 0.18 76.38 ± 2.69 77.44 ± 1.62
contact-high-school 65.26 ± 1.11 66.11 ± 1.07 63.03 ± 0.46 60.55 ± 2.52 63.47 ± 1.94
contact-primary-school 78.94 ± 0.43 77.50 ± 0.76 68.35 ± 2.69 71.52 ± 2.57 72.01 ± 2.10
MAG-Geo 69.93 ± 1.02 68.98 ± 0.87 61.27 ± 0.13 57.60 ± 1.82 60.60 ± 1.84
tags-math-sx 79.35 ± 0.28 79.05 ± 0.41 67.08 ± 1.54 71.64 ± 1.17 76.58 ± 0.82
coauth-DBLP 75.54 ± 0.34 73.15 ± 0.48 66.01 ± 0.60 69.75 ± 1.06 74.04 ± 0.72
NDC-substances 80.68 ± 0.81 80.71 ± 0.57 71.10 ± 5.31 71.67 ± 1.71 76.43 ± 4.05
DAWN 90.38 ± 0.27 90.18 ± 0.44 78.22 ± 0.00 81.52 ± 0.91 87.01 ± 0.22

3. HyperSAGNN: HyperSAGNN [133] uses node2vec embeddings followed by self-attention.

7.5.3 Configuration of Hyperparameters
Both node- and hyperedge-embedding dimensions are fixed to 64 for all models including SHONeN.
We initialize node embeddings for SHONeN with node2vec, as is the case with HyperSAGNN.
Node2vec hyperparameters are the same across all models: “window size” = 10, “number of random
walks” = 40 per node, and the rest according to the literature [38, 133]. We use 4 attention heads for
self-attention throughout all the models. Adam optimizer is used for all our experiments with a learning
rate of 0.001. The threshold t used to select the T2C2-based sub-hyperedges (see Definition 7.2 and
Algorithm 7) of a hyperedge has been fixed to 0.7. The variation in t affects the choice threshold with
which highly ranked sub-hyperedges are picked cumulatively. If we take t to be zero, T2C2 picks no
sub-hyperedges. On the other hand, a value of t = 1 would pick all sub-hyperedges. This could be
tuned for best results.

7.6 Results and Discussion
We first list down the hyperedge prediction performance scores for SHONeN and other baselines.
Then, we also reason for the performance improvement in SHONeNs by showing that hyperedges F
having larger-sized sub-hyperedges in their respective T2C2(F ) are the ones where our SHO-paradigm
contributes the most.

7.6.1 Hyperedge Prediction
The performance of SHONeN along with other baselines for hyperedge prediction is shown in Table 7.2.
SHONeN-T2C2 is the same as SHONeN-T2C2S, except for the fact that instead of using T2C2, the
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latter uses the T2C2S heuristic (Definition 7.3). SHONeN’s superior performance is evident from
Table 7.2, where for all datasets, it has the best AUC scores.

With the exception of coauth-DBLP, SHONeN-T2C2 and SHONeN-T2C2S have highest and sec-
ond highest performances for all the datasets. Also note that SHONeN shows significant improvements
over HGNN and HyperSAGNN, which consider vertices (and not sub-hyperedges) in their information
flow model. This could effectively be thought of as taking singleton sub-hyperedges. Hence, this
validates the fact that the SHO-domain in hyperedges is an important paradigm for modeling the
information flow therein. Moreover, some datasets have better performance on SHONeN-T2C2S
as compared to SHONeN-T2C2, while for others, the latter does better than the former; however,
the difference is nominal. This shows that the addition of singleton groups (as part of T2C2S from
Definition 7.3) does not help much when the SHO-based heuristic T2C2 is used. Nevertheless, their
addition improves the AUC performances. Moreover, we empirically observed that increasing the
number of layers in SHONeN does not lead to any significant improvements as compared to using only
a single SHONeN layer.

We further analyse the precision scores of predicting hyperedges based on the notion of a “size-
rank” score for sub-hyperedges in a hyperedge. For this, let us define a size-rank score SR(F ) of a
hyperedge F as

SR(F ) :=
k∑
i=1

|F ′i |
log(i+ 1)

, (7.15)

where F ′i , i = 1, . . . , k are the sub-hyperedges of hyperedge F fetched by T2C2(F ) (indexed as per the
decreasing order of CoSH scores). Intuitively, for hyperedges F whose T2C2(F ) has a lot of singletons
scored above other sub-hyperedges, we would have a smaller SR(F ), whereas SR(F ) would be
largest for hyperedges having highly-scored large-sized sub-hyperedges. We bin the email-Enron
hyperedges according to their SR values and calculate the precision for hyperedge prediction within
each bin. These precision values are shown in Fig. 7.5b, while Figure 7.5a shows the same for
HyperSAGNN on the same dataset. It can be observed that SHONeN gives higher precision value
to hyperedges having a high SR value (i.e., those for which CoSH scores for bigger sub-hyperedges
is high). The absolute increment in precision for different bins has been shown in Figure 7.5c.
Again, increment is higher for hyperedges having high SR values. In summary, this shows that
the SHO-paradigm has the most effect on hyperedges with a high SR value, i.e., for which bigger
sub-hyperedges have higher CoSH scores. These are the hyperedges where soft-partition T2C2(F )

has the most impact as compared to the the ones where singletons are scored higher as per CoSH.
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7.6.2 The CoSH Scores
In this section, we analyze the CoSH (Contextual Standalone Hyperdegree) scores that we had defined
in Definition 7.1. Essentially, we show that the total information captured by sub-hyperedges T2C2(F )

of a hyperedge F is higher for the SHO-paradigm than for HO (i.e., using singleton sub-hyperedges).
Note that CoSH scores (ψF (·)) are free parameters that are arbitrarily different from their peers.
This means they are “independent” of each other, which makes them additive, and hence cumulative
CoSH scores (CCoSH) of sub-hyperedges present in a soft-partition can be used as a measure
of “information captured” by a sub-hyperedges selection heuristic (or alternatively, its “extent of
coverage”). Hyperedges are first binned according to their mean sub-hyperedge size defined as

MSS(F ) :=
∑

F ′∈T2C2(F )

|F ′|
|T2C2(F )| . (7.16)

Next, the information coverage for T2C2 is calculated for each hyperedge as

CCoSHT2C2(F ) :=
∑

F ′∈T2C2(F )

ψF (F ′). (7.17)

For comparison with the HO-equivalent scores, “singleton” sub-hyperedges are used and information
coverage for the SING-mode is calculated as

CCoSHSING(F ) :=
∑
u∈F

ψF ({u}). (7.18)

Fig. 7.6 shows the mean information coverage scores (i.e. CCoSHT2C2 and CCoSHSING) for different
bins of hyperedges. The information coverage for T2C2 is significantly higher as compared to the
singleton-based sub-hyperedges, esp. for the hyperedges having higher MSS values. While for
hyperedges having lower MSS values, there is not much difference in the information coverage
between the two heuristics. This shows that the SHO-paradigm can be useful for all hyperedges
while singleton nodes based one (i.e., the HO-paradigm) fails to capture necessary information for
a lot of hyperedges (i.e.. those with high MSS values). Hence, a model using T2C2 has a better
hyperedge prediction performance as it is able to obtain more information through the SHO-domain.
Not-to-mention, this is also evident from Table 7.2, since SHONeN has significantly better hyperedge
prediction performances as compared to other baselines.
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7.6.3 Embeddings
Each of node2vec, HyperSAGNN, and SHONeN provide latent embeddings for nodes in a hypergraph
network. Since the t-SNE plots did not reveal much, we perform a “node pair similarity” analysis
by computing the cosine similarities between embeddings of two nodes, for each algorithm. Few
interesting pairs have been tabulated in Table 7.3. The analysis was performed for the “tags” dataset
(tags-math-sx) since nodes tagged with mathematical concepts are pragmatically interpretable. We
first obtain pairwise similarity through the node embeddings generated by the three models SHONeN
(S), HyperSAGNN (HS), and Node2Vec (N2V) in the hyperedge prediction experiments. Next, we
compare how these pairwise similarity changes across different models.

Table 7.3: Pairwise similarity between node embeddings for SHONeN, HyperSAGNN and Node2Vec.

Node Pair SHONeN HyperSAGNN Node2Vec

1: (elementary-set-theory, simple-groups) 0.91 -0.38 -0.05
2: (tiling, tessellations) 0.94 0.46 0.17
3: (matrix-equations, uvw) 0.81 -0.28 0.20
4: (graph-theory, topological-graph-theory) 0.83 -0.01 0.71
5: (random-graphs, topological-graph-theory) 0.86 0.02 0.73
6: (borel-cantelli-lemmas, supremum-and-infimum) 0.90 0.11 0.66
7: (bayesian, estimation-theory) 0.87 0.87 0.09
8: (brownian-motion, stochastic-analysis) 0.96 0.96 -0.03
9: (logic, provability) 0.95 0.95 0.15

We restrict our comparison to pairs with high similarity because most of the pairs with low
similarity scores are not interesting and do not make sense to be put together. Table 7.3 clearly shows
that SHONeN is superior compared to other baseline algorithms in that it improves the pairwise
similarity of pairs which are likely to co-occur as tags in a thread.

It should be noted that both SHONeN and HyperSAGNN use node2vec embeddings as initial
node embeddings which makes it interesting to see how these two models change the similarity of
pairs w.r.t node2vec. SHONeN improves the pairwise similarity even if a pair has a lower similarity
initially for node2vec (e.g., pairs 1, 2, 3, 7, 8, and 9), whereas HyperSAGNN either fails to improve
the similarity (e.g., pair 3) or ends up reducing it even further (for pairs 1, 3, 4, 5, 6), despite the same
pair having high similarity for node2vec. At the same time, for some pairs (e.g., pairs 7, 8, 9), the
similarity of SHONeN and HyperSAGNN are higher as compared to node2vec, meaning both models
have improved over initial node2vec embeddings. The performance improvement of SHONeNs for
hyperedge prediction could be attributed to the improvements of SHONeN in pairwise similarities over
baseline models.
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7.7 Conclusion
Hypergraphs help in representing higher-order relations, but modeling the evolution/formation of
hyperedges themselves is a complex task. We set out to show that the usual model of information
flow in a hypergraph – i.e., from nodes to hyperedges – which we also call the higher-order (HO)
paradigm has its limitations, and provide theoretical arguments for the same. For one, the rank of
the incidence matrix S (which is bounded by |V |) is not high enough for it to even barely span a |F|-
dimensional vector space R|F|, where V and F represent the set of vertices and hyperedges of a given
hypergraph. As a solution to this, we formulated the notion of a sub-higher-order (SHO) paradigm and
communicated the idea via a powerset-incidence matrix P that involves sub-hyperedges, which has an
exponentially better rank than S. The theory seems to fall in line with the experiment results, which
show significant improvements over AUC scores for hyperedge prediction using SHONeNs (a neural
network approach motivated by the SHO-structure). That the heuristic we provide in order to tame
computational complexity works in practice is a huge advantage in itself, since we are able to show
that we could perform a task worth exponential time-order successfully in polynomial time.
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(a) HyperSAGNN Precision (b) SHONeN Precision

(c) Increment in Precision

Figure 7.5: Precision comparison between SHONeN and HyperSAGNN for the email-Enron dataset.
Darker color denotes higher precision or an increment therein. The X-axis shows size-rank scores
SR(F ) for a hyperedge F , which is higher for highly-ranked non-singleton sub-hyperedges, and lower
for highly-ranked singleton sub-hyperedges in F . We see a higher precision (a dark blue bar) in the
right side of the plots as compared to the left; this shows that the SHO-impact was mostly seen in
hyperedges with a higher SR value.
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(a) NDC-substances (b) contact-primary-school

(c) contact-high-school (d) MAG-Geo

Figure 7.6: Information captured by T2C2 vs. that by singleton node based partition. The height of
each bar (Y-axis) corresponds to mean CCoSH(F ) scores, blue bars represent scores achieved using
T2C2 partitions (CCoSHT2C2(F )) whereas green bars represent the same for singleton nodes based
partitions (CCoSHSING(F )). Hyperedges are binned according to MSS(F ), the mean sub-group size
of T2C2(F ), which is denoted on the X-axis.
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Chapter 8

Leave Left nor Right: Predicting Bipartite
Hyperedges

“You want to know how two chemicals interact, do you ask them? No, they’re going to lie

through their lying little chemical teeth. Throw them in a beaker and apply heat.”

∼ “Dr. Gregory House”1

R
ELATIONS of a higher order could be captured using hypergraphs; but those also between two

different types of entities (which we term “left” and “right”) – calls for a “bipartite hypergraph”.
For example, given a left set of symptoms and right set of diseases, the relation between a subset of
symptoms (that a patient experiences at a given point of time) and a subset of diseases (that he/she
might be diagnosed with) could be well-represented using a bipartite hyperedge. The state-of-the-art in
embedding nodes of a hypergraph is based on learning the self-attention structure between node-pairs
from a hyperedge. In this chapter, given a bipartite hypergraph, we aim at capturing relations between
node pairs from the cross-product between the left and right hyperedges, and term it a “cross-attention”
(CAT) based model. More precisely, we pose “bipartite hyperedge link prediction” as a set-matching
(SETMAT) problem and propose a novel neural network architecture called CATSETMAT for the
same. We perform extensive experiments on multiple bipartite hypergraph datasets to show the superior
performance of CATSETMAT, which we compare with multiple techniques from the state-of-the-art.
Our results also elucidate information flow in self- and cross-attention scenarios.

8.1 Introduction
Relations between two entities are easily captured by a graph [77, 79], wherein a collection of pairwise
edges (either directed or undirected) encapsulates the relational structure (e.g., friendship relations

1Quoted from the series House M. D., Season 1, Episode 13: “Cursed” [98].
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S D

f f ′

f f ′∅

f ∪ f ′

b

b

(f, f ′)

Symptoms Diseases

Figure 8.1: Example of a symptoms-diseases bipartite hypergraph with left and right node sets being
those of symptoms S and diseases D. Higher-order bipartite relations could be interpreted as a single
bipartite hyperedge (above) b = F ∪ F ′ ∈ 2S∪D intersecting the node sets at F and F ′. Such a relation
can also be viewed (below) as a set match (F, F ′) ∈ 2S × 2D which comes as a result of a set matching
between symptoms and diseases.

between two people on a social network [105, 2]). Moreover, heterogeneous graphs [101, 115] are
used to capture relationship structures between entities of multiple “types” (e.g., a bibliographic
network [26] between nodes of type author, paper, venue, etc.). However, when the number of types is
restricted to two (say, “left” and “right”), and relations exist only across (and not among) them, we
resort to a bipartite graph [56] (e.g., an author-paper bibliography network).

Nevertheless, any such relation captured by a usual network – be it homogeneous, heterogeneous,
or bipartite – is strictly restricted to a pair of entities. For higher-order relations we use hypergraphs,
which akin to graphs, have their own heterogeneous versions (those that capture higher-order relations
between nodes of different types), which have been used in the literature to capture relations of the type
buyer-broker-seller [17], user-location [125], etc. While much has been done about such heterogeneous

hypergraphs in the literature [39, 137], bipartite hypergraphs [140] – hypergraphs wherein each
hyperedge is required to have at least one node from each one of two disjoint node-sets “left” and
“right” – have seldom been talked about.

An example would be the symptoms-diseases bipartite hypergraph shown in Fig. 8.1, where given
a (left) set S of symptoms and another (right) set D of diseases, every non-trivial diagnosis — one
wherein the doctor identifies at least one symptom (i.e., F ∈ 2S \ ∅) in a patient and diagnoses him/her
with at least one disease (i.e., F ′ ∈ 2D \ ∅) — forms a bipartite hyperedge F ∪ F ′, and a collection B

of such hyperedges forms a bipartite hypergraph H = (S ∪D,B). For the diagnosis F denotes all the
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its symptoms and F ′ denotes all diseases that the patient is suffering from.
Existing models use a self-attention mechanism (Hyper-SAGNN) to predict a heterogeneous

hyperedge, but miss the fact that the flow of information has to be across the right and left sets, and not
among them individually. In this chapter, we too aim to learn a neural network model for predicting
relations, only in a bipartite hypergraph. Going by the symptoms and diseases example in Fig. 8.1, we
need not model the existence of a set of symptoms or a set of diseases, but the existence of a relation
between a set of symptoms and a set of diseases.

We repose hyperedge prediction as a set-matching (SETMAT) problem: given two set-of-sets, what

pair of sets “match” with each other? In our case, the two sets would be the left and right hyperedges,
and we call it a “match” if they are linked by a bipartite hyperedge.

8.1.1 Key Contributions
1. This is the very first work on bipartite hypergraphs in machine learning, along with introduction

of some novel datasets. Moreover, we introduce the problem of predicting higher-order
bipartite relations in networks for the first time.

2. Elucidate the drawback of usual hyperedge embedding techniques for bipartite hyperedges via a
alternating positive/negative set pairs based explanation.

3. Pose the above problem as a set-matching prediction problem and show theoretical equivalence
of the same.

4. Formulate a cross-attention framework based neural network architecture to deal with the
set-matching and hence the bipartite hyperedge prediction problem.

8.2 Bipartite Hyperedge Prediction

8.2.1 Bipartite Hypergraphs
Given are two sets of disjoint nodes: left nodes V and right nodes V ′; a simple bipartite hypergraph
is defined as Hsim = (V ∪ V ′,B), where B ⊆ 2V ∪V

′ such that there is at least one node from each
node set in the elements of B. Continuing from Chapter 2 Section 2.6, we define a simple bipartite
hypergraph, we now define a different kind of bipartite hypergraph: a per-fixed1 one wherein basically
we fix the set of “left and right hyperedges” (defined in the next sentence) beforehand. Over the node
sets V and V ′, the set F := 2V \ ∅ of potential left hyperedges and the set F′ := 2V

′ \ ∅ of potential
1We call it “per-fixed” and not pre-fixed, since only left and right hyperedges are fixed.
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right hyperedges could be noted. Once we fix the set of actual left hyperedges to be F ⊆ F and actual

right hyperedges to be F′ ⊆ F′, we could define the set of potential bipartite hyperedges as:

B(F,F′) := {F ∪ F ′ | F ∈ F, F ′ ∈ F′}. (8.1)

Definition 8.1 (PER-FIXED BIPARTITE HYPERGRAPH). A per-fixed bipartite hypergraph is an

ordered set H = (V ∪ V ′,F ∪ F′,B) of left vertices V , right vertices V ′, fixed left hyperedges F,

fixed right hyperedges F′, and bipartite hyperedges B ⊆ B(F,F′). Furthermore, B̂ := B(F,F′) \B
denotes the set of all bipartite non-hyperedges.

A simple bipartite hypergraph is different from a usual (non-bipartite) hypergraph in that it has
two disjoint sets of nodes (V, V ′) instead of one. On the other hand, a per-fixed bipartite hypergraph is
different from the two, since we fix the sets of left and right hyperedges (F,F′) beforehand, and are
thence worried only about connections across them (as defined by B). An important consequence of
these facts is that we need not model the existence of the left or right hyperedges individually, but
focus on the cross bipartite relations instead.

Observation 8.1. Given a per-fixed bipartite hypergraph H = (V ∪ V ′,F ∪ F′,B), the triplet

G := (F∪F′,B) forms a bipartite graph over node sets F and F′. Also, the triplet Hsim := (V ∪V ′,B)

forms a simple bipartite hypergraph.

Note: Henceforth, unless prefixed with the term “simple”, the phrase “bipartite hypergraph” would
refer to a per-fixed bipartite hypergraph as per Definition 8.1.

8.2.2 The Bipartite Hyperedge Prediction Problem
In this chapter, we aim to solve the problem of bipartite hyperedge prediction (BHP), which we define
as follows:

Definition 8.2 (Bipartite Hyperedge Prediction (BHP)). Given H = (V ∪ V ′,F ∪ F′,B), learn a

BHP predictor ϕ : B(F,F′) → R such that for F, F̂ ∈ F and F ′, F̂ ′ ∈ F′ and disjoint sets P ⊆ B

and N ⊆ B̂ (see Def. 8.1) denoting the positive and the negative class respectively, we have:

max
ϕ∈RB(F,F′)

Pr(ϕ(F ∪ F ′) > ϕ(F̂ ∪ F̂ ′) | F ∪ F ′ ∈ P and F̂ ∪ F̂ ′ ∈ N) (8.2)

It is to be noted that Definition 8.2 considers a per-fixed bipartite hypergraph and one could also
define the BHP problem for a simple bipartite hypergraph (let’s call it simple-BHP) as well. The
only difference between BHP and simple-BHP would be that while for the former, the set of possible
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left- and right-hyperedges is fixed even before the problem is defined, for the latter, any possible
left- or right-hyperedge could be chosen as arbitrary subset choices from the respective node sets.
Nevertheless, the difference shows up only for bipartite non-hyperedges: for simple-BHP, we have
B ⊆ B(F,F′) and B̂ := B(F,F′) \B, but for per-fixed BHP (as per Definition 8.2, the set of observed
left hyperedges and right hyperedges are fixed to F ⊆ F and F′ ⊆ F′ respectively, and then hyperedges
and non-hypergedges are defined as B ⊆ B(F,F′) and B̂ := B(F,F′) \B. We will see how existing
hyperege prediction algorithms apply only to simple-BHP and fail to cater to the per-fixed BHP
problem.

8.3 Bipartite Hyperedge Set Matching Prediction (BHSMP)

8.3.1 Set Matching (SETMAT)
Definition 8.3 (Set Matching). Given two sets-of-sets X and Y, a set matching is defined as a relation

M ⊆ X× Y that matches a set element X ∈ X to another set element Y ∈ Y. Every (X, Y ) ∈M is

called a set match (or match for short). Naturally, the set M̂ := X×Y\M refers to the corresponding

set anti-matching and an element (X̂, Ŷ ) ∈ M̂ is called a set anti-match (or anti-match or non-match

for short).

Definition 8.4 (Set Matching Predicton (SMP)). Given two sets-of-sets X and Y, and a set matching

M ⊆ X× Y, the set matching prediction problem learns an SMP predictor µ : X× Y→ R such that

for X, X̂ ∈ X and Y, Ŷ ∈ Y, we have:

(X, Y ) ∈M and (X̂, Ŷ ) ∈ M̂ =⇒ µ(X, Y ) ≥ µ(X̂, Ŷ ). (8.3)

Lemma 8.1. Every bipartite hypergraph is a set-matching over its left and right hyperedges.

Proof. Given a bipartite hypergraph H = (V ∪ V ′,F ∪ F′,B), consider F and F′ as two sets-of-sets.
Now consider the following claim:

Claim: Sets B(F,F′) (see Definition 1) and F × F′ are equivalent.

Proof of Claim. The map σ : B(F,F′) → F × F′ defined by x 7→ (x ∩ V, x ∩ V ′) is
bijective since its inverse σ−1 is defined by (x, y) 7→ x ∪ y. Hence, the claim.

Using the same bijective map in the Proof of Claim above, we have:

∀b ∈ B, ∃F := b ∩ V ∈ F and ∃F ′ := b ∩ V ′ ∈ F′

Hence the relation:
M(H) := {(b ∩ V, b ∩ V ′) | b ∈ B} ⊆ F × F′

112



8. LEAVE LEFT NOR RIGHT: PREDICTING BIPARTITE HYPEREDGES

is a set matching over sets-of-sets F and F′ as per Definition 3.

8.3.2 BHP as SMP
Lemma 8.2. The BHP problem for a bipartite hypergraph can be solved by an SMP predictor for its

equivalent set-matching.

Proof. Given H = (V ∪ V ′,F ∪ F′,B), fix P ⊆ B and N ⊆ B̂ as positive and negative classes
respectively. Consider hyperedges F, F̂ ∈ F, F ′, F̂ ′ ∈ F′ be such that F ∪ F ′ ∈ P and F̂ ∪ F̂ ′ ∈ N.

Now, consider H’s equivalent matching M(H) and learn an SMP predictor µ : F × F′ → R.
Then, we have (F, F ′) ∈ M(H) and (F̂ , F̂ ′) ∈ M̂(H). Hence, from eq. (3) in Definition 4, we
have µ(F, F ′) ≥ µ(F̂ , F̂ ′). Now, if we define a derived BHP predictor ϕ : B(F,F′) → R as
b 7→ µ(b ∩ V, b ∩ V ′), we get:

ϕ(F ∪ F ′) = µ((F ∪ F ′) ∩ V, (F ∪ F ′) ∩ V ′) = µ(F, F ′)

≥ µ(F̂ , F̂ ′) = µ((F̂ ∪ F̂ ′) ∩ V, (F̂ ∪ F̂ ′) ∩ V ′) = ϕ(F̂ ∪ F̂ ′)
=⇒ ϕ(F ∪ F ′) ≥ ϕ(F̂ ∪ F̂ ′).

Hence, since F , F ′, F̂ , F̂ ′ were arbitrarily selected as per P and N, the foregoing arguments make ϕ
satisfy the BHP condition given in eq. (2) from Definition 2.

The foregoing lemma states an important result: that we could solve the BHP problem using
SMP. Since we have an equivalent set matching for a given hypergraph, and that we could solve the
BHCP problem using SMP, let us define a new problem called the Bipartite Hyperedge Set Matching
Prediction (BHSMP) problem as follows:

Definition 8.5 (Bipartite Hyperedge Set Matching Prediction (BHSMP)). Given a bipartite hyper-

graph H = (V ∪ V ′,F ∪ F′,B), a BHSMP predictor is simply defined as an SMP predictor for the

equivalent set matching.

8.4 The Cross Attention (CAT) Framework

8.4.1 The Problem with usual Self-Attention
Currently, the best known model to predict hyperedges is that of Hyper-SAGNN [133], which uses
(1) a self-attention framework to model information flow between nodes of a hyperedge, and (2) a
static-vs-dynamic comparative technique to learn hyperedge formation. But the main reason why it
does not deem fit for the bipartite hyperedge scenario is that it captures information flow between all
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the nodes of a usual (non-bipartite) hyperedge. And for a per-fixed bipartite hypergraph, the difference
is subtler: “pay heed to the cross-connections, not the self-connections.” In other words, one need
not model the occurrence of individual left and right hyperedges, and instead focus on the connection
between them. That is, we need not predict left and right hyperedges individually, but only predict the
connections between them, since the former is already fixed to be F and F′. For the symptoms-diseases
case, the reason why Hyper-SAGNN does not apply to the BHP prediction problem is that we are
interested in modeling/predicting new diagnoses involving observed symptom-sets and disease-sets.
Paying simultaneous attention to symptoms, diseases and their connections (diagnoses) leads to a
learning process that oscillates between the positive and negative classes. More about this would be
discussed in Section 8.9.4.

8.4.2 Usual Hyper-SAGNN based Self-Attention on Bipartite Hypergraphs
Let us see what effect applying Hyper-SAGNN has on a bipartite hyperedge. Consider a bipartite
hypergraph H = (V ∪ V ′,F∪F′,B). Now, let us take two sets F := {u1, u2, . . . , uk} ⊆ V and F ′ :=
{u′1, u′2, . . . , u′k′} ⊆ V ′ that are “observed” to be hyperedges. Also given are the embeddings of each
node: xi,x′i′ ∈ Rd for nodes ui and u′i′ respectively (1 ≤ i ≤ k, 1 ≤ i′ ≤ k′). If WQ,WK ∈ Rd×dK ,
andWV ∈ Rd×dV denote weight matrices for the self-attention framework of Hyper-SAGNN, we have
for the potential (k + k′)-sized hyperedge F ∪ F ′ = {u1, u2, . . . , uk, u

′
1, u
′
2, . . . , u

′
k′},

aij =(W T
Qxi)

T (W T
Kxj), and a′i′j′ = (W T

Qx
′
i′)
T (W T

Kx
′
j′), (V to V and V ′ to V ′) (8.4)

bij′ =(W T
Qxi)

T (W T
Kx
′
j′), and ci′j = (W T

Qx
′
i′)
T (W T

Kxj) (V to V ′ and V ′ to V ) (8.5)

where 1 ≤ i, j ≤ k and 1 ≤ i′, j′ ≤ k′. These values are then normalized using the softmax function
as follows:

αij =
exp(aij)

zi
, α′i′j′ =

exp(a′i′j′)

z′i′
, βij′ =

exp(bij′)

zi
, γi′j =

exp(ci′j)

z′i′
, (8.6)

where zi :=

(
k∑
t=1

exp(ait) +
k′∑
t=1

exp(bit)

)
and z′i′ :=

(
k′∑
t=1

exp(a′i′t) +
k∑
t=1

exp(ci′t)

)
.

The dynamic embeddings of the hyperedge nodes would then be:

di := tanh

(
k∑
l=1

αitW
T
V xt +

k′∑
l=1

α′itW
T
V x
′
t

)
, (8.7)

d′i′ := tanh

(
k∑
t=1

βi′tW
T
V xt +

k′∑
t=1

β′i′tW
T
V x
′
t

)
(8.8)
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8.4.3 Cross-Attention for Bipartite Hypergraphs
Going by the cross-attention paradigm, we introduce three extra attention parameters, amounting to
parameters WQ,WK ,W

′
Q,W

′
K ∈ Rd×dK and WV ,W

′
V ∈ Rd×dV . We redefine b, c, β, and γ for

1 ≤ i ≤ k and 1 ≤ i′ ≤ k′ as follows:

bii′ =(W T
Qxi)

T (W ′T
K x

′
i′), and βii′ = exp(bii′)

/
k′∑
t=1

exp(bit) , (8.9)

ci′i =(W ′T
Q x

′
i′)
T (W T

Kxi), and γi′i = exp(ci′i)

/
k∑
t=1

exp(ci′t) . (8.10)

Now, the cross-attention dynamic embedding of the left and right hyperedge nodes would then be:

δi := tanh

(
k′∑
t=1

βitW
′T
V x

′
t

)
, δ′i′ := tanh

(
k∑
t=1

γi′tW
T
V xt

)
. (8.11)

Finally, we have new embeddings δ1, δ2, . . . , δk of left nodes and δ′1, δ
′
2, . . . , δ

′
k′ of right nodes, all

dV -dimensional vectors.

8.5 The CATSETMAT Architecture
Akin to Hyper-SAGNN, we define a neural network architecture called CATSETMAT (Cross Attention
for Set Matching) that has both self- as well as cross-attention layers. CATSETMAT uses structures
defined in Section 8.4.3 that are derived from the self-attention layers in Hyper-SAGNN. A detailed
network architecture is depicted in Figure 8.2. And as explained before, we use the architecture to solve
the set matching prediction (SMP) problem which in turn solves the bipartite hyperedge prediction
(BHP) problem – a problem we had termed bipartite hyperedge set matching prediction (BHSMP).

Basically, it commences with the vector representations of two sets of hyperedges – one left
({x1,x2, . . . ,xk}), and the other right ({x′1,x′2, . . . ,x′k′}). These inputs are fed into two Hyper-
SAGNN-like self-attention (SAT) blocks SAT and SAT′ separately, which have their respective
parameter sets W (SAT)

Q ,W
(SAT)
K ,W

(SAT)
V and W (SAT′)

Q ,W
(SAT′)
K ,W

(SAT′)
V ). The SAT -blocks give out

revised embeddings y1,y2, . . . ,yk and y′1,y
′
2, . . . ,y

′
k′ . Although this applies one round of attention to

each of the left and right hyperedges, no information about the cross-connections between them have
been learned by our model.

Here is where the cross-attention (CAT) block – CAT – comes into picture, not-to-mention, with
its own set of parameters W (CAT)

Q , W (CAT)
K , W (CAT)

V , W ′(CAT)
Q , W ′(CAT)

K , W ′(CAT)
V . The CAT block

takes the revised embeddings through equations (8.9)–(8.11) and returns fresh embedding vectors
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x1 · · · xk x′1 · · · x′k′
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sCAT

δ1· · ·δk δ′1· · ·δ′k′s1· · ·sk s′1· · ·s′k′

∆1 · · · ∆k ∆′1 · · · ∆′
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(a) CATSETMAT-X
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Ws W′
sSAT SAT ′

y1· · ·yk y′1· · ·y′k′

CAT

δ1· · ·δk δ′1· · ·δ′k′s1· · ·sk s′1· · ·s′k′

∆1 · · · ∆k ∆′1 · · · ∆′
k′

p1 · · · pk p′1 · · · p′k
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FFk→k FFk′→k′
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(b) CATSETMAT-SX

x1 · · · xk x′1 · · · x′k′

Ws W′
sSAT SAT ′

CAT

SAT SAT ′

δ1· · ·δk δ′1· · ·δ′k′s1· · ·sk s′1· · ·s′k′

∆1 · · · ∆k ∆′1 · · · ∆′
k′

p1 · · · pk p′1 · · · p′k

p

FFk→k FFk′→k′

FF(k+k′)→1

(c) CATSETMAT-SXS

Figure 8.2: Neural network architectures of the three variants of the CATSETMAT algorithm that we
propose. (a) Only one cross-attention layer (X). (b) An additional pair of self-attention layers (S) before
cross-attention (SX). (c) Another additional pair of self-attention layers after cross-attention (SXS).
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Table 8.1: The list of bipartite hypergraph datasets introduced in this thesis, along with their vital
statistics: # left nodes |V |, # right nodes |V ′|, # left hyperedges |F|, # right hyperedges |F′|, and #
bipartite hyperedges |B|.

Dataset Left nodes (V) Right nodes (V′) |V| |V′| |B| |F| |F′|
tmdb-cc Cast (actors) Crew (other members) 4,556 3,802 2,825 2,824 2,744
tmdb-ck Cast (actors) Plot keywords 3,156 1,256 2,669 2,656 2,621
mag-acm-ak Authors Keywords 1,059 2,338 1,388 847 1,379

(a) tmdb-cc (b) tmdb-ck (c) mag-acm-ak

Figure 8.3: Size distributions of the left and right hyperedges in the bipartite hypergraph for the three
datasets. On X-axis is the size of the left hyperedges, and on Y-axis, that of right hyperedges.

δ1, δ2, . . . , δk and δ′1, δ
′
2, . . . , δ

′
k′ – vectors we call dynamic embeddings, just as Zhang, et al. [133] do

for Hyper-SAGNN. In parallel is a layer of static-weightsWs,W
′
s ∈ Rd×ds that simply transforms the

original left vectors xi and right vectors x′i′ into static embeddings s1, s2, . . . , sk and s′1, s
′
2, . . . , s

′
k′

defined by si := tanh
(
W T

s xi
)

and s′i′ := tanh
(
W ′T

s x
′
i′

)
respectively, where 1 ≤ i ≤ k and

1 ≤ i′ ≤ k′. Following Zhang et al. [133], we compare the static and dynamic embeddings using
the Hadamard square operator, resulting in vectors ∆1,∆2, . . . ,∆k and ∆′1,∆

′
2, . . . ,∆

′
k′ defined as

∆i := (δi − si)◦2 and ∆′i′ := (δ′i′ − s′i′)◦2. Finally, two positional feed-forward layers [133] FFk→k
and FFk′→k′ followed by a consolidating layer FF(k+k′→1) computes the probability p that the set of
nodes match or not.

We use altogether three variants of CATSETMAT: CATSETMAT-X (only CAT ), CATSETMAT-SX (a pair
of SAT followed by a CAT ), and CATSETMAT-SXS (CATSETMAT-SX with another pair of SAT modules
following CAT ). Architecture diagrams for all the three variants have been shown in Figure 8.2.

8.6 Bipartite Hypergraph Datasets
Refer Table 8.1 for details about datasets.
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8.6.1 Data Description
All datasets we have prepared are available on the following link:

https://www.dropbox.com/s/cxykmi37695jlcw/catsetmat_data.zip?dl=0

Let us discuss the datasets one by one.

8.6.1.1 TMDB Cast-Crew (tmdb-cc)

We take a subset of movies from The Movie Database (TMDB; https://www.themoviedb.org/)
available as a Kaggle (https://www.kaggle.com/) dataset named TMDB 5000 Movie Dataset

(https://www.kaggle.com/tmdb/tmdb-movie-metadata). The node sets considered here are
those of movie-actors and the movie-crew (set of other important people involved in a movie, such as
directors, producers, etc.). Every bipartite hyperedge contains a set of actors (the cast; the left nodes)
and a set of crew-members (the right nodes) who participated in at least one movie.

8.6.1.2 TMDb Cast-Keywords (tmdb-ck)

TMDB also gives information about plot keywords that hint at the content of a movie. A bipartite
hyperedge would contain a set of actors (the cast; the left nodes) and a set of keywords (the right nodes)
related to least one movie.

8.6.1.3 MAG ACM Authors-Keywords (mag-acm-ak)

This is a bibliographic network from Microsoft Academic Graph (MAG) [99], from which we choose
those publications that appeared in conferences and journals associated with Association for Computing

Machinery (ACM; https://www.acm.org/). The two node sets used are those of authors (the left
node set) and (research-based) keywords (the right node set), and each bipartite hyperedge contains a
set of co-authors and a set of keywords at least one of their papers has been tagged with.
Note: The raw data for MAG is not available directly and it’s a long process to collect portions of
it. However, there used to be an online source that had official links to download the whole MAG
dataset. We have an earlier version of the data downloaded with us, and this processing was made on
that dataset. Nevertheless, the prepared data is available via the Dropbox link given earlier.

8.6.2 Data Preparation

8.6.2.1 Processing Data

We start with a raw dataset consisting of multiple entities, of which we choose two. Then we fetch
bipartite hyperedges, which are merely events occurring at a given point of time (e.g., a movie getting
released, or a paper getting published, etc.); this gives us sets of higher-order co-occurrences of the
two entities we chose. Next, we apply a couple of filters to refine the data:
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1. Time filter: We filter the data into events occurring at time t ∈ [tmin, tmax].

2. Occurrence frequency filter: We only keep those nodes in the node-sets V and V ′ that have
their occurrence count within a particular range [omin, omax].

3. Size filter: We only keep those bipartite hyperedges F ∪ F ′ that have left and right hyperedge
sizes (individually) in the range |F |, |F ′| ∈ [smin, smax].

Please note that the filters are applied sequentially, and the prepared data is stored as a two-column
(left hyperedge, right hyperedge) CSV file.

8.6.2.2 Negative Sampling

For the BHP problem, each bipartite hyperedge F ∪ F ′ ∈ B is considered to be a positive example
(∈ P), and each non-hyperedge F ∪ F ′ ∈ B̂ := B(F,F′) \B, a negative class sample. But since the
negative patterns are too many, we avoid the problem of class imbalance by negative class sampling.
For this, we first pick two random hyperedges: one from left, F ∈ F and the other from right, F ′ ∈ F′,
and tag the pair as a negative class pattern (∈ N) if they aren’t connected via a bipartite hyperedge (i.e.,
if F ∪ F ′ /∈ B). We use a negative-to-positive ratio of 5:1.

8.6.2.3 Train-Test Split

We split the bipartite hyperedges and sampled bipartite non-hyperedges (sampled as mentioned in
Section 8.6.2.2 above) into train and test data using a 80:20 train-test split ratio. For mag-acm-ak,
we create validation data as well, using 60:20:20 as train-validation-test proportions, and perform
hyperparameter tuning on the validation data, as described in Section 8.8.1.5. For each dataset-
algorithm combination, we perform five experiments, performing a separate split and a separate
negative sampling for each. This also introduces a standard deviation in our results, which we have
reported with the results.

8.7 Related Work
As far as usual hypergraphs are concerned, they have not been studied as much as graphs (some
earlier works are are [135, 64, 17]). Of some recent approaches [11, 107, 132, 7, 31, 46, 51, 82,
123, 122, 8, 133] for hyperedge prediction and hypergraph embedding, the most recent one, viz.,
Hyper-SAGNN [133] performs the best. It uses a self-attention based model wherein each hyperedge is
handled separately. Our approach is strongly based on theirs, and the whole concept of cross-attention
(and a combination thereof with self-attention) extends their framework to set matching as well.

It is to be noted that left and right hyperedges in a bipartite hypergraph are basically sets of nodes;
hence machine learning techniques to handle sets become relevant here. Deep set embedding calls
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for permutation-invariant neural networks, and there has been a considerable amount of work on this
topic [111, 128, 112, 62, 134, 73, 118], of which we use FSPool [134], a sort-pooling based technique,
as one of our baselines. Moreover, deep set-to-set matching has been performed on image data [88],
but it does not apply to our problem since it uses a single universal set, as opposed to two disjoint ones
in the case of a bipartite hypergraph.

Bipartite networks are so essential that Guillaume et al. [40] have argued for an underlying bipartite
structure in all networks. Of late, neural network techniques for usual graphs have become widely
recognized [38, 55, 42, 110] (ref. Wu et al. [120] for a survey). But the same is not true for deep
bipartite networks. The CATSETMAT architecture we propose inherits attention from GAT [110]
and weakly relates to BGNN [43]. Furthermore, to the best of our knowledge, there is no work that
explores a bipartite hypergraph from the perspective of network science, and all of them [140, 5, 44]
belong to the domain of discrete mathematics.

8.8 Experiments
We perform bipartite hyperedge prediction experiments on some real-world datasets. Apart from
the baselines described in Section 8.8.1, we use three versions of CATSETMAT: CATSETMAT-X (only
CAT ), CATSETMAT-SX (a pair of SAT followed by a CAT ), and CATSETMAT-SXS (CATSETMAT-SX
with another pair of SAT modules following CAT ), which have been depicted in Figure 8.2.

8.8.1 Baselines
As discussed in Section 8.7, we prepare four classes of baselines: node2vec-based, bipartite-graph-
based, set-embedding-based and hyperedge-prediction-based, a brief and detailed explanation of each
of them have been given below.

8.8.1.1 Brief Overview

1. node2vec-based:
n2v-cross-mean, n2v-full-mean, n2v-cross-min, n2v-full-min (We describe these
baselines in detail in the supplementary material).

2. Bipartite-graph-based: Since our hypergraph could be interpreted as a bipartite “graph” (Ob-
servation 8.1), we prepare some baselines on bipartite versions of two popular link prediction
algorithms [66]: Common Neighbor (CN) [79] and Adamic Adar (AA) [2]

3. Set-embedding-based (FSPool): For this, we first convert the node embeddings obtained from
node2vec [38] (with dimension 16, since it showed best results) of each of the left and right
hyperedges into set-embeddings using FSPool [134], and then learn a simple classifier.
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4. Hyperedge-prediction-based (Hyper-SAGNN): We use the existing best performing algorithm
Hyper-SAGNN [133] for hyperedge prediction, wherein we interpret our bipartite hypergraph as
a usual one as per Observation 8.1. We use the same experiment settings as Zhang et al. [133].

8.8.1.2 Detailed Description: Node2vec-based

For these set of baselines, we convert the bipartite hypergraph into a usual graph by expanding each
bipartite hyperedge b = F ∪ F ′ ∈ B into a set of three types of edges:

• Cross-edges E×(b) := F × F ′

• Left self-edges E◦(b) := {e ⊆ F : |e| = 2}

• Right self-edges E′◦(b) := {e ⊆ F ′ : |e| = 2}

Next, we embed each node v into its node2vec [38] features X(v) and find cosine similarity between
the incident nodes of each edge. Finally, we either take a mean or a min of that score and call it a
prediction score. We use the same settings used in Hyper-SAGNN [133] for their node2vec based
baselines.

1. n2v-cross-mean: For node2vec-cross-mean, we take (v, v′) ∈ E×(b) and define the score to
be:

n2vcross,mean(b) :=
1

|E×(b)|
∑

(v,v′)∈E×(b)

X(v)TX(v′). (8.12)

2. n2v-full-mean:
n2vfull,mean(b) :=

1

|E(b)|
∑

(u,v)∈E(b)

X(u)TX(v), (8.13)

where E(b) := E×(b) ∪ E◦(b) ∪ E′◦(b) denotes the full set of edges.

3. n2v-cross-min:
n2vcross,min(b) := min

(v,v′)∈E×(b)
X(v)TX(v′). (8.14)

4. n2v-full-min:
n2vfull,min(b) := min

(u,v)∈E(b)
X(u)TX(v). (8.15)

8.8.1.3 Detailed Description: Bipartite-graph-based

To create these baselines, we first convert our bipartite hypergraph H = (V ∪ V ′,F ∪ F′,B) into an
induced bipartite graph G = (V ∪ V ′,E) by defining E as:

E := {(v, v′) ∈ V × V ′ | ∃b ∈ B s.t. {v, v′} ⊆ b},
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and then compute the bipartite versions of the Common Neighbor (CN) and the Adamic Adar (AA)
scores as follows:

CN(v, v′) =
LCN(v, v′) +RCN(v, v′)

2
, and AA(v, v′) =

LAA(v, v′) +RAA(v, v′)

2
,

where “L” and “R” stand for left and right scores respectively. If Γ denotes the neighbors of a node (or
union of neighbors of a set of nodes), we can define the individual scores as (note that left nodes have
neighbors in the right and vice-versa):

LCN ′(v, v′) = |(Γ(Γ(v)) \ {v}) ∩ (Γ(v′) \ {v})|

RCN(v, v′) = |(Γ(Γ(v′)) \ {v′}) ∩ (Γ(v) \ {v′})|

LAA′(v, v′) =
∑

w∈(Γ(Γ(v))\{v})∩(Γ(v′)\{v})

1

log(1 + |Γ(w)|)

RAA(v, v′) =
∑

w′∈(Γ(Γ(v′))\{v′})∩(Γ(v)\{v′})

1

log(1 + |Γ(w′|)

We thus have CN and AA scores for each left-right vertex pair. Using this, we find the similarity
scores for a left-right hyperedge pair (F, F ′) as:

ALGO(F, F ′) = AGGREGATE({ALGO(v, v′) | (v, v′) ∈ F × F ′}), and

where we use three choices for the AGGREGATE function and two for ALGO, thereby forming the six
baselines:

1. bipartite-AA-min: AGGREGATE=MINIMUM; ALGO=AA

2. bipartite-CN-min: AGGREGATE=MINIMUM; ALGO=CN

3. bipartite-AA-max: AGGREGATE=MAXIMUM; ALGO=AA

4. bipartite-CN-max: AGGREGATE=MAXIMUM; ALGO=CN

5. bipartite-AA-avg: AGGREGATE=AVERAGE; ALGO=AA

6. bipartite-CN-avg: AGGREGATE=AVERAGE; ALGO=CN

8.8.1.4 Hyperparameter Settings

There are no parameters for CN and AA scores for the bipartite graph based baselines. For the
node2vec-based baselines, we use embedding dimension as 64, and other node2vec parameters are
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Figure 8.4: Tuning two hyperparameters on the dataset mag-acm-ak for CATSETMAT: node2vec
dimension dim and learning rate lr.

taken from Hyper-SAGNN. For FSPool and HyperSAGNN, we take the latent dimension as 16 and
other parameters are as per Hyper-SAGNN. We tried this with other dimensions as well, but the best
results were on this configuration.

8.8.1.5 Hyperparameter Tuning for CATSETMAT

We fix some hyperparameters as per Hyper-SAGNN, and for the embedding dimension and the learning
rate, we perform a hyperparameter tuning, as shown in Figure 8.4, and then pick them to be 16 and
0.001 respectively. We use the Adam optimization algorithm for our tasks. The initial embeddings
that we use in our model are from node2vec (an alternating random walk on nodes and hyperedges
respectively), just as Hyper-SAGNN does.

8.9 Results and Discussion
The results for hyperedge prediction on a few datasets have been listed in Table 8.2, where each
baseline class (see Section 8.8.1) has been separated by a horizontal line. For each algorithm, and
each dataset, we report the %AUC test scores for the SMBHP problem (see Definition 8.5). In each
case, we see that our algorithm CATSETMAT performs the best unanimously. More observations are
described in the following sections (Sections 8.9.2–8.9.3). An explanation of the poor performance of
some state-of-the-art algorithms has been provided in Section 8.9.4.

8.9.1 Running times
While the bipartite algorithms (first six) took within seconds (10-20 seconds) to complete, the node2vec
ones (next four) ran for around 5-10 mins per dataset (the node-to-vec embeddings were pre-stored
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Table 8.2: Results (%AUC) for the bipartite hyperedge prediction problem

Algorithm tmdb-cc tmdb-ck mag-acm-ak

bipartite-AA-min 43.9987± 0.9787 37.6217± 1.2686 49.9388± 1.1913
bipartite-CN-min 43.8015± 0.9613 37.5078± 1.2589 49.8958± 1.1743
bipartite-AA-max 53.0463± 0.4581 49.4547± 0.5887 63.5835± 0.5314
bipartite-CN-max 52.5955± 0.4971 49.3627± 0.5697 62.0365± 0.6099
bipartite-AA-avg 54.6746± 0.9042 46.9037± 0.7630 64 .5778 ± 1 .6425
bipartite-CN-avg 54.0634± 0.9388 46.7163± 0.7498 63.3550± 1.7340

n2v-cross-mean 77.4467± 1.1838 63 .5867 ± 0 .4989 59.2567± 2.0266
n2v-full-mean 77 .6833 ± 1 .5083 62.8900± 0.1606 59.0933± 2.2257
n2v-cross-min 52.4433± 1.5320 51.9333± 1.2777 32.8867± 1.1585
n2v-full-min 53.9433± 1.0404 52.8267± 1.1521 31.7933± 1.6376

FSPool 63.8305± 0.8315 50.2596± 1.3653 63.4810± 1.6438

Hyper-SAGNN 55.6071± 2.9784 47.0969± 1.3497 63.0752± 13.0197

CATSETMAT-X 83.2761± 2.2315 74.6650± 2.1525 67.6457± 3.0129
CATSETMAT-SX 86.5461± 3.3937 84.0697± 0.9814 76.6221± 0.9676
CATSETMAT-SXS 88.2177± 0.8268 81.9037± 2.3348 75.6302± 3.0833

and used, so experiment not conducted multiple times). On the other hand, FSPool took 10 mins, 10
mins, and 7 mins respectively for the three datasets per experiment. Hyper-SAGNN takes a total of
12-15 mins for the first two datasets and around 10 mins for the mag-acm-ak (again, per experiment).
Finally, our algorithms took around 25-30 mins per experiment for the first two datasets, and around
15 mins for the last one. For a total of five experiments, each of our algorithms took a total of ∼ 375

minutes (∼ 6.3 hours) to run.

8.9.2 Performance of Baselines
Although bipartite link prediction algorithms (bipartite-AA-min–bipartite-CN-avg) perform
poorly with AUCs ranging from 43–55% and 37–50% for the first two datasets, for mag-acm-ak, some
of them perform considerably better with AUCs going up to 64.5% as well. These algorithms heavily
depend on the interconnectivity between the left and right hyperedges, and it seems to be the best in
the mag-acm-ak dataset. The next set of algorithms – the four node2vec-based ones – perform much
better than the foregoing group, but still lag behind CATSETMAT by huge margins. Surprisingly, the
bipartite graph based algorithms outperform the node2vec ones for the last dataset. This only shows
that performances vary dramatically from dataset to dataset.

The next two algorithms – FSPool and Hyper-SAGNN, though being cutting-edge deep learning
approaches in their respective fields (viz., set and hyperedge embeddings respectively), fail to capture the
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desired bipartite hypergraph structure. The main reason for this, as has been explained in Section 8.9.4,
is that they struggle to learn a consistent representation of nodes since the same set of nodes get
involved in bipartite hyperedges (positive class) as well as bipartite non-hyperedges (negative class)
simultaneously. Moreover, Hyper-SAGNN also shows quite a high amount of deviation (13%), which
is undesirable of any machine learning algorithm. But this only shows the huge dependence of
Hyper-SAGNN on the data preparation process (i.e., negative-sampling and train-test split) that we
perform five times. More about this has been discussed in Section 8.9.4.

8.9.3 Performance of CATSETMAT
Finally, the last three algorithms – the ones we have proposed in this chapter – are the best performing
ones among the lot. For tmdb-cc, we see that our best method is 13.56% better than the group-
wise next best (i.e., n2v-full-mean), which has an AUC of only 77.68%. Another of our methods
(CATSETMAT-SXS) performs the best for tmdb-ck, with a much higher improvement of 33.06%

as compared to n2v-cross-mean, the group-wise next best. For both these datasets, we obtain
quite high AUC values of around 84–88%, but the same is not true for mag-acm-ak, for which
the best performance is limited to 76.62%, albeit given by our algorithm CATSETMAT-SX. Although
this is a much lower score as compared to the other two datasets, but it is 18.65% higher than
bipartite-AA-avg, which is the best performing baseline. Barring our algorithms CATSETMAT-X,
CATSETMAT-SX, and CATSETMAT-SXS, no other algorithm consistently performs well on all the three
datasets. While at least one dataset deemed problematic for each of the baselines, these three algorithms
remained consistent for all datasets. Moreover, no baseline touched the 80% AUC mark except the
CATSETMAT-based algorithms. We credit this success to the cross-attention paradigm, which focuses
on the cross-links more than on the left and right hyperedges, thereby avoiding the positive-negative
dilemma as explained in Section 8.9.4.

Although the CAT module (see Figure 8.2) is our main contribution in this chapter, adding more
SAT layers is expected to model the individual left- and right-hyperedges as well, since it might capture
some inner domain-specific relational structure in each of them. We can clearly see this effect being
illustrated in Table 8.2, wherein adding only one pair of SAT modules before CAT (in CATSETMAT-SX)
boosts the performances of a purely CAT -based algorithm CATSETMAT-X by upto 3.92%, 12.59%,
and 13.27% for the three datasets respectively. While the addition of another pair of SAT modules
(CATSETMAT-SXS) shows the potential of improving the AUC performance by an additional 1.93%

for tmdb-cc, but same is not true for the tmdb-ck and mag-acm-ak, where the performance instead
drops by 2.57% and 1.31% respectively. This effect could be attributed to over-fitting due to an
increase in model parameters. As a result of this, we conclude that addition of more number of SAT
modules would not further boost the performance, and so, it should be limited to a single pair of SAT
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mag-acm-ak tmdb-ck tmdb-cc

Figure 8.5: Epoch-by-epoch AUC performance curves (mean and standard-deviation values)

modules before CAT , as done in CATSETMAT-SX. The same could be seen from a t-test performed at
5 + 5− 2 = 8 degrees of freedom. When CATSETMAT-X is compared with CATSETMAT-SX, we get p
values of 14.6%, 0.005%, and 0.05% respectively for datasets tmdb-cc, tmdb-ck, and mag-acm-ak,
which shows a significant improvement when one extra self-attention layer is added. While on the
other hand, we get p values of 36.7%, 12.6%, and 55.6% respectively when CATSETMAT-SX and
CATSETMAT-SXS are compared, showing that this rise/fall1 is not so significant.

8.9.4 The Positive-Negative Dilemma
It is clear how our algorithm works well, and how the baselines fail to capture the bipartiteness for
hyperlink prediction. Table 8.5 shows learning curves for two algorithms on the three datasets. We
could see that unlike CATSETMAT , the other HyperSAGNN does not seem to converge, and keeps
oscillating around 0.5 AUC.

We reason for this behavior as follows. A careful look at the definition of a per-fixed bipartite
hypergraph (Definition 8.1) would reveal a straightforward yet important fact: that left and right sets
of hyperedges are fixed in advance. What makes this factor interesting is another definition: that of
bipartite non-hyperedges (again, Definition 8.1) or the negative class, which ensures that each negative
sample would be formed from the same fixed left and right hyperedges that formed samples from
the positive class.

1The first dataset shows a rise, and the rest two show a fall; nevertheless they are all statistically insignificant.
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To better denote these concepts, we know that F and F′ represent the sets of left and right
hyperedges, which are fixed even before defining bipartite relations B (the positive class), let alone
defining bipartite non-relations B̂ (the negative class). That is, a typical positive sample looks like
F ∪ F ′, where the choice of F and F ′ is not arbitrary, since they belong to the fixed sets F and F′

respectively. What is striking to observe is that, a negative sample would also look like F̂ ∪ F̂ ′, where,
again, F̂ ∈ F and F̂ ′ ∈ F′. In other words, there is nothing that stops a left hyperedge F that involves
in forming a positive sample from getting involved in forming a negative sample as well. The same
could be said for a right hyperedge F ′ also. As a result, we observe that the positive and the negative
samples are built from mostly (if not entirely) the same left and right hyperedges.

When an algorithm that treats the entire hyperedge F ∪ F ′ as a whole is deployed to embed it, it
keeps getting confused, as to how to train the parameters to account for both classes simultaneously.
Thus, it does not settle for a stable output for both F as well as F ′, owing to F and F ′’s simultaneous
association with both the classes. This is what algorithms like Hyper-SAGNN and FSPool suffer from,
when it comes to a per-fixed bipartite hypergraph. If we, however, change our negative sampling
method to a sized-random [81] technique, we essentially change the per-fixed hypergraph to a simple
hypergraph.

Surprisingly enough, the result becomes totally different! Hyper-SAGNN now reports a test AUC
of a whopping 98% on mag-acm-ak, a dataset that was the toughest to handle as per Table 8.2. It is
clear from the foregoing arguments that there exists a positive-negative dilemma in usual hyperedge
embedding approaches as far as bipartite hypergraphs are concerned. The unusually higher variance
of 13% observed in Table 8.2 for Hyper-SAGNN on mag-acm-ak could be easily attributed to this
dilemma. There could be many more variants of negative sampling techniques for the bipartite
hyperlink prediction problem. For now, we have only looked at the per-fixed version of the non-
bipartite-hyperedges. More negative sampling methods would give different perspectives of bipartite
hypergraphs and their evolution.

8.10 Conclusion
A bipartite hypergraph is a peculiar data structure almost never studied in network analysis. We
formalize almost all notions of this structure with standard notations used for graphs and usual
hypergraphs, and introduce the bipartite hyperedge prediction problem. However, since we were
able to establish an equivalence between this problem and set-matching, we could propose a solution
for the latter and use it for the former. We could successfully posit that focusing on cross-attention
plays a significant role in capturing bipartite relations well. When evaluated using AUC scores, the
performances of all versions of our algorithms were much higher than expected. An important insight
that we were able establish was the existence of a positive-negative dilemma in existing cutting-edge
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algorithms like Hyper-SAGNN designed for the very job of hyperedge prediction.
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Chapter 9

Parts to Whole: Putting it all Together

“Vanilla Ice Cream 6= Cold + Sweet + Vanilla Aroma + Softness + Yellow.”

∼ Daniel Katz

9.1 Summary

9.1.1 What did we cover?
We started with merely touching the field of hypergraphs – i.e., by measuring and exploiting its effect
on its clique-induced versions and problems therein. In particular, we were interested in the link
prediction problem and a handful of seemingly strong heuristics therefor that perform very well in
networks.

Then we moved closer, in that we studied the effect negative sampling has on hyperlink predic-
tion, and also aimed to provide some concrete negative sampling algorithms for better evaluation
of hyperlink prediction techniques. Moving further, we decided to tackle the hyperlink prediction
problem by developing strong insights from real-world hypergraphs, esp. from hypergraphs studied
by Benson et al. [11]. Inspired by the success therein, we moved a huge step forward and focused
on changing the information-flow model in hypergraphs and exploiting this to perform hyperlink
prediction via a neural network.

In parallel, we had been working on the idea of capturing the dynamics governing a bipartite
hypergraph – a concept that we had only seen in a handful of works on discrete mathematics, and had
potential in representing higher-order relations of a bipartite variety. More specifically, we decided
to focus on a special kind of bipartite hypergraph – a “per-fixed” one – wherein the set of left and
right hyperedges remains fixed beforehand. Predicting the formation of bipartite hyperlinks using a
neural network model was the ultimate goal of this exercise.
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9.1.2 What ideas did we test/explore?
While studying pairwise links under the effect of hypergraphs, we were interested in the role hyper-
edges play in the exceptionally high performance of link prediction heuristics. Particularly, we had
conjectured that since hyperedges induce cliques (or regions of high density) in the resulting graph,
they would create a favourable environment for neighborhood based heuristics such as common-
neighbors, Adamic Adar, etc. Also, since we expected a strong influence of higher-order relations
in the structure of induced graphs, we ideated to utilize hypergraph-based node similarity scores for
link prediction instead, thereby taking our analysis to a conclusive end.

While exploring hyperlink prediction, we had seen how insignificant the negative sampling step
in its literature was – contrary to that in the link prediction problem. We guessed that the impact of
negative sampling would be high, since the performance of well-established hyperlink prediction
algorithms heavily varied as we sampled the non-hyperlinks differently. Further, we thought of
rigorously testing the idea that hyperedges in the future mainly form from dense regions in the past
(the clique-closure hypothesis, CCH), and then using this to improve upon existing solutions to the
hyperlink prediction problem outright. We also got interested in the idea that flow of information in a
hypergraph should not be as straightforward as they seem to be – i.e., from nodes to hyperedges and
vice versa, and smaller sub-groups of nodes should also play explicit roles in the process. We were
interested in testing this idea using hyperlink prediction as a downstream task.

As far as bipartite higher-order relations are concerned, we were not interested in a simple bipartite
hypergraph, and focused on the per-fixed one instead. We could mentally link the problem of “pre-
dicting bipartite hyperlinks” to that of “set matching” in collections of sets, but did not find models
that solved the latter problem. So, we thought of improving upon the current state-of-the-art in hy-
perlink prediction – HyperSAGNN – and build a deep learning framework to handle set matching
for sets-of-sets, so as to use the same solution for bipartite hyperlink prediction as well.

9.1.3 What solutions/insights did we contribute towards?
We saw that link prediction on clique-induced graphs gets heavily affected by their underlying hy-
pergraph structure. Numerically speaking, we noted that all the five datasets had an AUC adjustment
factor – a metric whose deviation from unity is proportional to the said effect – greater than one for
all link prediction heuristics (except for Jaccard Coefficient, but only on one dataset); in some cases, we
even observed this factor shoot up to 1.9. To correct for this bias, we suggested a readjustment to the
AUC performance. Moreover, in order to exploit the effect hyperedges have on graphs, we provided
rigorous mathematical structures that could transmit a link prediction heuristic from graphs to
hypergraphs, and observed that AUC performances increased significantly when hypergraph-based
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node similarity heuristics were used along with graph-based ones.
On the negative-sampling end, we were able to successfully show that it is an extremely im-

portant step, since hyperlink prediction algorithms from the literature exhibited random relative
performance on the same datasets as we went from one negative sampling approach to another; in
this process, we also established two benchmark algorithms for negative sampling: MNS and CNS.
As for our hypothesis that hyperedges in a hypergraph are formed from cliques and near-cliques
(CCH), we had strong evidence in terms of our hypothesis test results, which clearly confirmed our
conjecture. Using it straightaway for hyperlink prediction gave significant improvements on the
task, and further reinforced the veracity of CCH. Further, that a sub-higher-order based paradigm
would improve hyperlink prediction motivated us for sure, its computational intractability did create
barriers. But we were successfully able to not only come up with a sub-optimal heuristic T2C2 to
capture sub-hyperedges more practically, but also reason for the fact that the approach was better.
Moreover, the improvement of hyperlink prediction results using SHONeNs further established our
sub-higher-order information flow model.

For bipartite hypergraphs, we could successfully establish the notions of per-fixed bipartite hyper-
graphs, set-matching for set-of-sets, and the application of the latter for bipartite hyperlink predic-
tion. It was surprising to observe that cutting-edge techniques for hypergraphs and set-embedding
such as HyperSAGNN and FSPool respectively failed miserably in capturing the notion of bipartite
hyperedges, and hence could not discriminate them against bipartite non-hyperedges. We could estab-
lish that this was due to the intermingling of the self-attention parameters, which couldn’t heed the
fixed left and right hyperedges in the per-fixed bipartite hypergraph we were processing. A segregation
of parameters by creating a different attention block for connections across left and right node-sets (i.e.,
cross-connections) boosted the performance of the task at hand by huge factors. We formulated a
cross-attention based neural network architecture – CATSETMAT – that could handle such bipar-
tite hyperlinks better. Bipartite hypergraph datasets we have prepared and thus used for this task
form a novel contribution in their own right.

9.2 A Roadmap to the Future
That “higher-order relations skew link prediction on graphs” has much bigger consequences than can be
discussed within the scope of this thesis. Firstly, the broader question remains: “Why do higher-order

relations even affect link prediction? And how can one even correct it in general”? There is no simple
answer to these questions at this point. We believe that the fundamental reason why higher-order
relations have this effect is that there is no unambiguous way to model higher-order relations in simple
graphs. Any approach to convert hypergraphs into simple graphs either loses information or adds bias
or both. We also hypothesize that the effect of higher-order relations is not limited to link prediction
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and they affect several other problems pertaining to networks as well — these too constitute the main
directions for future research. We would also like to use the functional-formulation we established to

convert graph-based similarity scores to hypergraphs for global, random-walk based measures such as

Katz, PageRank, etc. as well as for link prediction on directed, signed, and heterogeneous networks.
In extensions to hyperlink prediction, we would like to extract more concepts from baselines

such as Bayesian Sets and Spectral Hypergraph Clustering (baselines for C3MM) and incorporate

them into C3MM, to hopefully improve further. The sub-higher-order formulation we have proposed
has only been used for hyperlink prediction in this thesis. It opens pathways to multiple different
directions as well: extending SHONeNs to generic sets (for, say set embeddings), to directed- and

knowledge-hypergraphs, and for applications such as clustering and node classification. The theoretical
analyses we perform has dug-up promising insights, which could be used to more rigorously analyze
the domain of hypergraphs and their evolution. Also, we would aim to work with more variety of

networks: heterogeneous hypergraphs, directed hypergraphs, and weighted hypergraphs, and on

specific applications as well.
The behavior of bipartite hypergraphs is next to unknown among machine learning researchers.

We have hopefully shed some light on one aspect of their application on a problem having real-world
implications — the bipartite hyperedge prediction problem. But a lot of problems remain unanswered.
For instance, we still have a hazy picture of why other baselines do not perform well (although we
have given reasoning for the same). Also, a variety of unusual higher-order relations still remain to

be modeled: e.g., a k-partite hypergraph. Another huge area that needs attention is the preparation

and analysis of more and more bipartite hypergraph real-world datasets. We leave these problems as
future work.

9.3 Our Vision
Higher-order relations span across an ocean of concepts waiting to be picked up by network scientists.
The ultimate struggle of every research – truth-finding – seems easier when seen from a toned-down
version of the environment, e.g., from the perspective of pairwise relations or graphs in the case of
networks, but we cannot reject the reality that nature does not necessarily follow pairwiseness. This
is exemplified by each chapter in this thesis. Nevertheless, pairwiseness is helpful for the extremely
useful mathematical analyses (owing to advances in graph theory) and to address practical concerns
such as computational complexity. But as researchers working on the intersection of science and
engineering, we ought be foresighted. There was a time when data analysis was performed on kilobytes
of data, and today, we are playing in terabytes; similar could be said about computing power. It should
not be hard to see that the future holds more and more resources and better and better algorithms for
optimal processing of data, to cater in-turn to the advancement of artificial intelligence.

132



9. PARTS TO WHOLE: PUTTING IT ALL TOGETHER

Summarizing the foregoing statements, we mean to posit that the sheer computational infeasibility
of higher-order relations or hypergraphs should not hinder research therein, lest we miss the joy
of uncovering truer models seldom paid heed to in the past. For example, the field of Gestalt
theory had in the far past been extensively utilized by researchers such as Marvin Minsky [75],
Satosi Watanabe [116], et al. who were working on the foundational aspects of pattern recognition.
They in their formulations have questioned the very pairwiseness that narrows the scope of pattern
representation itself, and further extends its impact to the notions of similarity, clustering, classification,
etc. It has been half a century since, and we see only traces of higher-order-ness in a handful of
researches happening on hypergraphs, simplicial complexes, multi-way data analysis, etc.

Through this thesis, we feel that we have made some insightful revelations about the working of
hypergraphs as real-world networks. The seemingly gigantic perception of the power set of a set of
vertices sure forces one to resort to pairs of vertices instead, but one needs to push the boundaries
of graph theory and start tackling hypergraphs, for a graph by definition is also a hypergraph but the
opposite is not true. With the advent of deep learning, explainability has become a huge issue, and
though research on the same is slowly gaining pace, unexplained yet excellently performing deep
learning models are way ahead in the race. Pieces of research such as shortcut learning [34] and
attention is not explanation [47]1 forces one to believe that unless intervened, with time, a typical
machine learning model’s performance is going to be far more important than its explanation.

Our encounter with deep learning hypergraph models have shown us that to explain why a deep
learning model works well – which it sure does – is not an easy task. In fact, we were able to learn
and contribute better via Chapters 3–6 than we did through the other two chapters that involved
deep learning, albeit we made our best attempts to explain why our latter models SHONeN and
CATSETMAT work. Moreover, what we understand by the superlative performance of these models
on hypergraphs is that careful curation of subtle elements of higher-order relations (namely, sub-

hyperedges and cross-connections respectively) gives a better performance than the deep learning
model having to figure out the subtleties themselves. Thus, this very exercise – of hunting for insights
into the governing principles of hypergraphs – could hit two birds with one stone: learn a better
performing model, and explain it via the insights gained before building it. Surprisingly enough, our
guess is that one does not even need to study a hypergraph if a powerful enough deep learning model is
employed to predict hyperedges from a graph itself — only it won’t explain why it did what it did.

That said, we are hopeful that more and more interest would approach the intersection of hyper-
graphs and machine learning. One might very well be interested in mere link prediction, which seems
to be a purely graph-based exercise. But Chapters 3 and 4 vouch against this argument and clearly
establish that higher-order relations should not be ignored. Similarly, if the aim itself is to predict

1There exists a counter work – attention is not not explanation [119] – as well!
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whether a group of entities would come together as a higher-order collaboration – the problem of
hyperlink prediction – there are only a handful of approaches available in the literature. Moreover,
slight changes made to the existing models based on strong formulations (such as clique-closure or
sub-higher-order or cross-attention) enhance the performance of these models not only for unipartite
hypergraphs (Chapters 6 and 7), but for bipartite hypergraphs as well (Chapter 8).

In summary, we envision a future where higher-order relations are invested into to such an extent,
that instead of graph research driving research on hypergraphs (as is the case with graph Laplacian fol-
lowed by hypergraph Laplacian, graph neural network followed by hypergraph neural network, graph
convolution followed by hypergraph convolution, graph GANs followed by hypergraph GANs, and
graph attention followed by hypergraph attention), the chronological order of the interest undergoes a re-
versal.
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